کشت و صنعت

بهره وری در تولیدات

کشت و صنعت

بهره وری در تولیدات

عوامل خوردگی کوره در دیگ بخار

یکی از مشکلات اساسی که می تواند باعث بروز مشکل برای کوره های دیگ بخار باشد، خوردگی در نقاط و وسایل مختلف آن است که ضمن هدر رفتن مقدار زیادی انرژی، آسیب های مکانیکی متعددی به کوره وارد می کند. از آنجا که هر کوره از بخش های متعددی همچون بدنه، اطاقک احتراق (Fire Chamber)، دودکش، مشعل و سایر تجهیزات جانبی تشکیل شده، لذا علل خوردگی و راه حل های پیشنهادی در هر یک از بخش ها به طور مجزا مورد بحث و بررسی قرار می گیرد.

بدنه: معمولاً بدنه یا دیواره خارجی کوره ها را از ورقه استیل16/3 و کف آن را از ورقه 4/1 می سازند. در طراحی ها عموماً اتلاف حرارتی از بدنه کوره حدود 2 درصد منظور می شود. نوع و ضخامت عایق کاری بدنه داخلی کوره باید طوری در نظر گرفته شود که دمای سطح خارجی کوره بیش از (1800° F) نشود. اصولاً عایق کاری و عایق های به کار رفته در کوره ها از نظر سرویس دهی مناسب، عمر معینی دارند و به مرور زمان ساختمان کریستالی آنها تغییر یافته و ضخامت آنها کم می شود و این تغییرات ساختمانی سبب تغییر ضریب انتقال حرارت و اتلاف انرژی به بیرون خواهد بود. مطالعات میکروسکپیک و کریستالوگرافیک چند نمونه عایق کار کرده، با نوع تازه آن موید این مطلب است.

در صورتی که عایق دیواره های کوره بر اثر بنایی ناصحیح، عدم انجام صحیح Curing بر مبنای دستورالعمل، حرارت زیاد و یا شوک های حرارتی ترک بردارد، نشت گازهای حاصل از احتراق که عبارتند از: So x، No x، N2،Co2 (درصورتی که نفت کوره به عنوان سوخت مصرف شود) و بخار آب در لابلای این ترک ها و تجمع آنها در لایه بین بدنه کوره و عایق دیواره و سرد شدن تدریجی آنها تا دمای نقطه شبنم، باعث خوردگی بدنه می شود.
تداوم این امر ضمن اتلاف مقدار بسیار زیاد انرژی (از طریق بدنه کوره به محیط اطراف)، باعث ریختن عایق و در نتیجه اتلاف بیشتر انرژی و گسترش خوردگی بر روی بدنه کوره و سایر نقاط آن خواهد شد.
در یک بررسی ساده بر روی کوره ای که چندین سال از عمر عایق آن می گذشت ملاحظه شد که دمای اندازه گیری شده واقعی سطح کوره در اکثر نقاط بسیار بیشتر از میزان طراحی است. این مقدار در بعضی از موارد به (1800° F )نیز می رسید.
در این کوره ضمن جدا شدن عایق از دیواره کوره و گسترش خوردگی در نقاط مختلف بدنه، گرم شدن بدنه کوره نیز موجب خم شدن دیواره ها شده و سرعت خوردگی را افزایش داده و باعث خرابی قسمت های مختلف کوره شده است. به طور کلی برای جلوگیری و یا کاهش مشکلات خورندگی بر روی بدنه کوره لازم است به هنگام تعمیرات اساسی ضمن توجه به عمر عایق دیواره در صورتی که عمر آنها از حد معمول گذشته باشد (البته با توجه به درجه حرارتی که درهنگام کار کردن واحد درمعرض آن بوده اند) آنها را با عایق مناسب و استاندارد تعویض کرد و در صورت وجود ترک (قبل و یا بعد از بنایی)، محل ترک ها را با الیاف مخصوص KAOWOOL پر کرد. همچنین در بنایی، عملیات Curing را مطابق دستور العمل انجام داد تا پیوند هیدرولیکی در عایق های بکار رفته در بنایی، به پیوند سرامیکی تبدیل شده و میزان رطوبت باقیمانده در دیواره از 0.4 gr/m2 بیشتر نشود.
البته چنانچه Ceramic Fiber (الیاف سرامیکی) به عنوان عایق دیواره کوره مورد استفاده قرار گیرد، بدلیل عدم نیاز به Curing و Drying و سبکی وزن، مشکلات احتمالی استفاده از عایق های نیازمند به Curing را نخواهیم داشت. ضمن این که عمر بیشتر و چسبندگی بهتری به دیواره، نسبت به دیگر عایق های موجود دارند.

تیوب ها یا لوله های داخل کوره:
معمولاً کوره ها متشکل از دو بخش RADIATION و CONVECTION هستند که بایستی ظرفیت گرمایی (DUTY) کوره از نظر درصد، تقریباً به نسبت70 و30 درصد بین این دو بخش تقسیم شود.
از آنجا که لازم است سیال به اندازه دمای مورد نظرگرم شود بایستی حرارت مورد نیاز خود را از طریق هدایتی از لوله ها و تیوب های داخل کوره دریافت کند، این لوله ها نیز حرارت مورد نیاز برای این انتقال حرارت را از طریق تشعشعی و جابجایی در اثر احتراق سوخت در داخل کوره جذب می کنند. انتخاب آلیاژ مناسب جهت لوله با توجه به نوع سیال و ترکیبات آن و میزان حرارت دریافتی توسط لوله و در معرض شعله قرار گرفتن از اهمیت بسزایی برخوردار است.
مسائلی که به بروز مشکلاتی برای تیوب ها منجر می شود عبارتند از:
سرد و گرم شدن ناگهانی لوله، گرم شدن بیش از حد لوله و بالا رفتن دمای تیوب از حداکثر مجاز آن، در معرض شعله قرار گرفتن و برخورد شعله به لوله (impingement) ، ایجاد یک لایه کُک بر روی جداره داخلی لوله، Carborization، Hogging، Bending، Bowing، Sagging، Creeping، خوردگی جداره داخلی لوله بر اثر وجود مواد خورنده در سیال عبوری، خوردگی جداره بیرونی لوله در اثر رسوبات حاصل از احتراق سوخت مایع بر روی جداره خارجی لوله، کارکرد لوله بیش از عمر نامی آن (80 هزار الی 110 هزار ساعت)
سرد و گرم شدن ناگهانی لوله، ممکن است به Creeping (خزش) که نتیجه آن ازدیاد قطر لوله می باشد منجر شود که در این صورت احتمال پارگی لوله و شکنندگی آن را افزایش می دهد. چنانچه در اثر Creeping مقدار ازدیاد قطر از 2 درصد قطرخارجی لوله بیشتر شود، لوله مزبور بایستی تعویض شود.
در یک اندازه گیری عملی که برای برخی از تیوب های هشت اینچی و شش اینچی کوره (کوره تقطیر در خلا) H-151 در هنگام تعمیرات اساسی صورت پذیرفت، محاسبات زیر بدست آمد:


برای تیوب "8
OD = 8.625 (اصلی)
OD = 8.75 (اندازه گیری شده)
OD = 0.125  (افزایش قطر لوله)
OD ALLOWABLE = 8.625x2%=0.1725
هنوز می توان از تیوب مزبور استفاده کرد.


برای تیوب "6
OD = 8.625 اصلی
OD = 8.675 اندازه گیری شده
OD = 0.05 افزایش قطر لوله
OD ALLOWABLE = 6.625x2%=0.1325
که هنوز می توان از تیوب شش اینچی مزبور استفاده کرد.
همان طور که مشخص است تیوب 8 حدوداً بیش از دو برابر تیوب 6 ازدیاد قطر داشته است.


برای لوله "6
کوره  H-101 (اتمسفریک)
OD =6.625 اصلی
OD = 6.635 اندازه گیری شده
OD =0.01 اندازه قطر لوله
OD ALLOWABLE = 6.625x2%=0.1325


بالا نگه داشتن دمای پوسته تیوب ها سبب کاهش مقاومت لوله ها و کاهش عمر مفید و گارانتی حدود یکصد هزار ساعتی آنها می شود.
تجربه نشان داده است که اگر به مدت 6 هفته سطح خارجی (پوسته) لوله ای 900°C بیش از مقدار طراحی در معرض حرارت قرار بگیرد، عمر تیوب ها نصف می شود.
یکی دیگر از مشکلات پیش آمده برای لوله ها، برخورد شعله به لوله (IMPINGEMENT) است، که باعث OVER HEATING کوره و در نهایت HOT SPOT می شود. این امر می تواند ضمن لطمه زدن در محل برخورد شعله به لوله، باعث تشدید عمل کراکینگ مواد داخل لوله شود و مواد مزبور به دو قسمت سبک و سنگین تبدیل گردند.
مواد سنگین به جداره داخلی لوله چسبیده و کک ایجاد می کنند. به ازای تشکیل یک میلی لیتر ضخامت کک با توجه به ضریب هدایتی کک که برابر مقدار خاصی می باشد برای یک شارژ حرارتی معمول در قسمت تشعشعی کوره H-101 (اتمسفریک) می باشد، معادل فرمول زیر است:
می بایستی 300°C دمای پوسته تیوب بالاتر رود تا سیال موجود در تیوب به همان دمای موردنظر برسد. در این صورت ملاحظه می شود بالا رفتن دمای تیوب به چه میزان اتلاف سوخت و انرژی، داشته و به طور کلی به مرور زمان چه لطمه ها و آسیب هایی به کل کوره وارد می شود. به عبارت دیگراختلاف دمای پوسته تیوب های کوره که در طراحی عموماً 1000°F بالاتر از دمای متوسط سیال درون آن در نظر گرفته می شود، به مرور زمان با تشکیل کک (با رسوبات بیرونی) بیشتر می شود.


مشکل دیگر که به علت دمای بالا برای تیوب های کوره ها ایجاد می شود خمیدگی در جهت های مختلف این تیوب هاست.
یکی دیگر از مسائلی که باعث خم شدن و شکستگی لوله ها می شود پدیده کربوریزیشن (carborization) است که بر اثر ترکیب کربن با آهن پدید می آید: این واکنش که باعث تولید کربور آهن خواهد شد در دمای بالاتر از 7000°c ایجاد می شود 7000°Cتا 14000°C این حالت عمدتاً در زمان Curing و drying کوره پدید می آید. البته Hot spot نیز بیشتر در این زمان ها اتفاق می افتد.
وجود ناخالصی های مختلف مثل فلزات سدیم، وانادیم، نیکل و غیر...، فلزاتی مثل گوگرد و ازت به صورت ترکیبات آلی در سوخت های مایع، مسائل عدیده ای را باعث می شوند، که از آن جمله کاهش انتقال حرارت از طریق سطح خارجی تیوب به سیال درون تیوب است که به علت تشکیل رسوبات مربوط به ناخالصی های مزبور بخصوص رسوبات فلزی بر روی تیوب هاست. به همین دلیل برای رسیدن به دمای مورد نظر سیال موجود در لوله، مجبور به مصرف سوخت بیشتر خواهیم شد. در نتیجه مشکلات ایجاد گرمای بیشتر در کوره و مسائل زیست محیطی در اثر تشکیل SOX، NOX و ... را خواهیم داشت. از طرفی به دلیل نشست این رسوب ها بر روی تیوب ها مسئله خوردگی و سوراخ شدن پیش خواهد آمد. علت این خوردگی که از نوعHigh temp corrosion می باشد پدیده سولفیدیش است، که در دماهای بین630°C تا700°C بوقوع می پیوندد. همان طور که گفته شد علت اصلی آن وجود عناصر وانادیم، گوگرد، سدیم و نیکل به همراه گازهای حاصل از احتراق سوخت است.
فلزات ذکر شده (بصورت اکسید) به کمک این گازها بالا رفته و بر روی تیوب های قسمت تشعشع و جابه جایی می نشینند. خوردگی و سوراخ شدن تیوب، بر اصل اکسید شدن و ترکیب عناصر مزبور باآلیاژ تیوب استوار بوده که باعث ایجاد ترکیبات کمپلکس با نقطه ذوب پایین می شود.
ترکیب اولیه پس از Na2SO4، سدیم وانادایت به فرمول Na2O6V2O5 است که نقطه ذوب آن 6300°C می باشد. عمده ترکیبات دیگر که شامل کمپلکسی از ترکیب پنتا اکسید وانادیم و سدیم است در شرایطی به مراتب ملایم تر و درجه حرارتی پایین تر ذوب می شوند. برای مثال مخلوط وانادیل وانادیت سدیم به فرمول Na2OV2O411V2O5 و متاوانادات سدیم به فرمول Na2OV2O5 در 5270°C ذوب می شوند. ذوب این کمپلکس ها شرایط مساعدی را برای تسریع خوردگی بوجود می آورد. در اینجا ترکیبات حاصل از احتراق نه تنها به نوع ناخالصی بلکه به نسبت آنها نیز بستگی کامل دارد و در مورد وانادیم میزان سدیم از اهمیت خاصی برخوردار است.
البته سدیم وانادیل وانادایت پس از تولید و ذوب شدن، با فلز آلیاژ مربوط به تیوب، ترکیب شده و بر اثر سیال بودن از سطح آلیاژ کنار رفته و سطوح زیرین تیوب مربوطه در معرض ترکیب جدید قرار می گیرد. ادامه این وضع به کاهش ضخامت تیوب و در نهایت سوراخ شدن و از کار افتادن آن منجر می شود.

مشعل ها و سوخت:
نقش کیفیت نوع سوخت و نوع مشعل ها شاید از همه عوامل یاد شده در کارکرد مناسب، راندمان بیشتر و کاهش خوردگی بیشتر برخوردار باشد. چنانچه از مشعل های Low excess air و یا نوع مرحله سوز (stage burning) استفاده شود، هوای اضافی مورد نیاز به میزان قابل توجهی کاهش یافته و به حدود 3 و 5 درصد می رسد که ضمن کاهش و به حداقل رساندن گازهای خورنده و مضر زیست محیطی مثل NOx، Sox، در بالا بردن راندمان کوره بسیار موثر خواهد بود. این امر باعث کاهش مصرف سوخت شده، و در نتیجه باعث کاهش گازهای حاصل از احتراق و آسیب رساندن به تیوب ها، بدنه کوره و دود کش ها خواهد شد. وضعیت عملکرد مشعل ها بایستی به طور مداوم زیر نظر باشد. بد سوزی مشعل ها می تواند دلایل متضادی، همچون نامناسب بودن سوخت، عیب مکانیکی، کک گرفتگی سرمشعل و یا بالعکس، رفتگی و سائیدگی (Errosion) بیش از حد سر مشعل، کمبود بخار پودر کننده و ... داشته باشد. وجود مواد آسفالتی، افزایش مقدار کربن باقیمانده (carbon residue) ، بالا بودنِ مقادیر فلزات مثل سدیم، نیکل، وانادیم و هم چنین سولفور در سوخت مسائل متعددی را در سیستم احتراق ایجاد می کند که این مسائل به طور کلی به دو دسته تقسیم می شوند.
الف - مسائل عملیاتی قبل از مشعل ها و احتراق:
این مسایل در اثر وجود آب و نمک ها و ته نشین شدن آنها در ذخیره سازی نفت کوره بوجود می آیند. در این رابطه عدم تخلیه مداوم مخزن ذخیره سازی، خوردگی و مشکلات ایجاد شده به طور خلاصه عبارتست از:
تشکیل لجن (sludge) در مخزن در اثر عدم استخراج کامل نفت کوره و آب، انباشته شدن لجن در فیلترها در اثر محصولات ناشی از خوردگی و پلیمریزاسیون هیدروکربورهای سنگین به علت اثر کاتالیزوری محصولات ناشی از خوردگی، انباشته شدن لجن و صمغ های آلی در گرم کننده سوخت، گرفتگی و خوردگی در نازل های پودر کننده نفت کوره (Atomizer).
ب - مسائل عملیاتی بعد از مشعل ها و احتراق:
ایجاد خوردگی در مناطق گرم و سرد کوره ها و دیگ های بخار، ایجاد رسوبات بر روی لوله های قسمت جابه جایی کوره و قسمت سوپر هیت دیگ های بخار، کاهش ضریب انتقال حرارتی در اثر رسوبات و در نهایت افت راندمان حرارتی در اثر افزایش دمای گازهای خروجی حاصل از احتراق از دودکش کوره.
در اثر احتراق سوخت هایی که دارای مقادیر زیادی کربن باقیمانده و خاکستر باشند، مقادیر متنابهی رسوب در قسمت های جابه جایی کوره و یا قسمت سوپر هیت دیگ های بخار تولید می شوند. این رسوبات به سختی در اثر عملیات دودزدایی از سیستم خارج می شوند. مسئله سازترین سوخت ها، سوخت هایی است که در آنها نسبت وانادیم به سدیم 12Na کمتر از 10 باشد.
به غیر از مشکلات ایجاد شده توسط اکسیدهای سدیم و وانادیم، فلز نیکل نیز که در سوخت وجود دارد با اکسیژن ترکیب شده و اکسیدهای نیکل را به صورت رسوباتی بر روی لوله ها بوجود می آورد.
برای جلوگیری از ایجاد خوردگی توسط اکسیدهای وانادیم و یا کاهش سرعت آن اقدامات زیر لازم است:

1.      کاهش مقدار اکسیژن موجود در گازهای حاصل از احتراق، که این مقدار اکسیژن را می توان با تنظیم مقدار هوای اضافی کوره یا دیگ بخار کنترل کرد و نسبت به کاهش آن اقدام نمود. در این حالت راندمان حرارتی به طور چشمگیری افزایش می یابد.
2.      جلوگیری از تشکیل گاز So3 (انیدرید سولفوریک) یا کاهش آن در اثر کاهش هوای اضافی از 35 درصد به میزان 10 درصد، که در این صورت میزان تبدیل گاز انیدرید سولفورو (SO2) نصف می شود.
3.      افزایش نقطه ذوب رسوبات تشکیل شده در سطوح لوله ها، به طوری که در شرایط عملیاتی موجود این رسوبات به نقطه ذوب خود نرسند. این امر با افزودن ترکیبات منیزیم، به علت داشتن اختلاف پتانسیل شیمیایی زیاد و اورتووانادیم (3MGO-V2 O5) که دارای نقطه ذوب بالایی هستند (حدود 1120°C)، میسر می شود.
4.      مناسب ترین روش جلوگیری از خوردگی بواسطه وجود ناخالصی های موجود در سوخت مایع، استفاده از سوخت های گازی و بخصوص گاز طبیعی است که ضمن داشتن صرفه اقتصادی، با یک سرمایه گذاری اولیه به نسبت کم می توان مشکلات خوردگی ذکر شده را به شدت کاهش داد.
براساس برآورد اقتصادی انجام شده، تعویض سوخت مایع و جایگزینی آن با سوخت گاز طبیعی، پس از بیست ماه، بازگشت سرمایه گذاری را در پی خواهد داشت. در عین حال گاز طبیعی مشکلات ذکر شده مربوط به مصرف سوخت مایع و هم چنین عدم مصرف بخار به عنوان بخار پودر کننده کاهش قابل ملاحظه مسائل زیست محیطی را به همراه دارد. به واسطه مصرف سوخت مایع تولید NOx، Sox ، به اندازه تفاضل قیمت جهانی سوخت گاز مصرفی و سوخت مایع، که یا به فروش می رسد و یا به عنوان خوراک واحد RFCC مورد استفاده قرار می گیرد، سود عاید می کند.

تجهیزات جانبی:
مهم ترین تجهیزات جانبی مورد استفاده در کوره ها را عموماً دوده زداها (SOOT BLOWERS) و آنالایزرها O2 ANALAYZER یا اخیراً (CO2 ANALYZER) تشکیل می دهند.
با استفاده روزانه از دوده زدا (یک بار در روز) در یک کوره ملاحظه شده که بلافاصله 10°C دمای سیال خروجی از کوره افزایش می یابد، به عبارت دیگر به میزان همان 10°C اضافی، سوخت مصرفی کوره کاهش می یابد. ضمن این که ترکیبات مضر و خطرناک که هم باعث مسائل خوردگی می شوند و هم انتقال حرارت را کاهش می دهند، از روی لوله ها زدوده می شوند. استفاده از سایر تجهیزات جانبی پیشگرمکن های هوا AIR PREHEATERS و لوازم بازیافت حرارتی از دودکش هاFORCED AND INDUCED FANS، و یا ECONOMIZER در دیگ های بخار باعث کاهش سوخت مصرفی و در نتیجه کاهش مشکلات ایجاد شده در کوره ها و دیگ های بخار می شود.

دیگ بخار


فیزیک‌دان معروف فرانسوی که در 22 اوت سال 1647 میلادی متولد شد. پس از پایان دوران متوسطه، در دانشگاه آنژه به ادامه‌ی تحصیل پرداخت و در رشته‌ی پزشکی فارغ‌التحصیل گردید. وی از نوجوانی به امور صنعتی و فنی علاقمند و اولین کسی بود که به فکر استفاده از نیروی بخار افتاد. او در سال 1679 دیگ بخار را ساخت و سپس در سال 1690 ماشینی اختراع کرد که در آن بر اثر انبساط بخار، انرژی حرارتی به انرژی مکانیکی تبدیل و سبب حرکت وسیله می‏گردید. بعدها به آزمایش و تکمیل این ماشین بخار پرداخت و در 29 می سال 1707 موفق به ساخت یک «ماشین بخار» گردید که با انجام تغییرات و نصب دیگ بخار جداگانه، آن را عرضه نمود. اختراع پاپن و تجربیات وی باعث شد تا پس از او اتومبیل و کشتی بخار ساخته شود. دیگ بخار که به نام «دیگ پاپن» نیز معروف است، منشأ تولید نیروی محرکه‌ی اجسام متحرک می‌باشد. این دانشمند بزرگ با وجود تحقیقات و کشفیات فراوان، در اواخر عمر، زندگی را در فقر و تنگدستی گذراند و سرانجام در سال 1712 میلادی درگذشت.

دیگ بخار در نیروگاه های تولید برق گرمایی

در این نوشته راجع به «نیروگاه‌های تولید برق گرمایی» (thermal power plant)،‌ اجزای اصلی، مزایا و معایب آن‌ها مطالبی را خواهید خواند. نیروگاه‌های «توربین بخار» (steam turbine) که گاهی به‌ عنوان نیروگاه‌های گرمایی یا زغال‌سنگی شناخته می‌شوند، منبع بزرگی برای تولید برق کشور به شمار می‌روند. این نیروگاه‌ها معمولا بر اساس چرخه «رانکین» (Rankine) کار می‌کنند.



مشخصات و مبانی اصلی نیروگاه‌های گرمایی

احتمالا با اصطلاح «ژنراتور» (Generator) آشنا هستید. این تجهیز وسیله‌ای برای تبدیل انرژی مکانیکی به انرژی الکتریکی است. ژنراتور با کمک نوعی از انرژی بیرونی به چرخش درمی‌آید. اگر برای چرخش ژنراتور از نیروی بخار استفاده گردد، نیروگاه به‌عنوان نیروگاه بخار شناخته می‌شود.

یک نیروگاه ساده بخار بر اساس چرخه رانکین تولید انرژی می‌کند. در مرحله اول،‌ آب با استفاده از پمپ‌های آب با فشار بالا به «دیگ بخار» (boiler) تزریق می‌شود. آب پرفشار در دیگ بخار حرارت جذب می‌کند و تبدیل به «بخار فوق داغ» (Superheat steam) با فشار بالا می‌گردد. بخار که انرژی زیادی دارد در طول «توربین» (تجهیزی مکانیکی که جریان انرژی سیال را به انرژی مکانیکی تبدیل می‌کند) جریان می‌یابد و آن را می‌چرخاند.


به‌منظور استفاده کامل از انرژی بخار، سه مرحله «توربین کم‌فشار» (Low pressure turbine)، «توربین فشار متوسط» (intermediate pressure turbine) و «توربین پرفشار» (High pressure turbine) در نظر گرفته شده است. «شفت» (shaft) توربین به شفت ژنراتور متصل است؛ بنابراین زمانی که شفت توربین به حرکت در‌می‌آید،‌ ژنراتور می‌چرخد و انرژی الکتریکی تولید می‌شود.

طی این فرآیند بخار انرژی خود را از دست می‌دهد. سپس بخار کم‌فشار اشباع از مسیر «چگالنده» (condenser) عبور می‌کند و به مایع تبدیل می‌شود. بعد از آن آب به سمت پمپ‌های مرحله‌ی اول هدایت و چرخه کامل می‌گردد. به همین تربیت این چرخه مرتبا برای تولید انرژی تکرار می‌شود.

ساخت نیرو‌گاه‌ بخار
در این نوشته اجزاء مختلف یک نیروگاه زغال‌سنگ‌سوز را شرح می‌دهیم. اساس عملکرد نیروگاه‌هایی که با سوخت فسیلی کار می‌کنند تقریبا مشابه است. برای مثال نیروگاه‌ گازسوز تنها بخش پردازش زغال‌سنگ را ندارد. هر نیروگاه بخار را می‌توان به بخش‌های زیر تقسیم کرد.


۱. بخش پردازش زغال‌سنگ
انبار زغال‌سنگ: جایی که زغال‌سنگ ذخیره می‌گردد،‌ انبار زغال‌سنگ نام دارد. در اولین مرحله زغال‌سنگ از معادن دریافت و در جای مناسب ذخیره می‌شود.

مخزن: زغال‌سنگ از انبار به سمت مخزن روانه می‌گردد. این مخازن، ظروفی هستند که معمولا قبل از آسیاب قرار می‌گیرند و وظیفه رساندن دائم زغال‌سنگ به دستگاه آسیاب را بر عهده دارند. حداقل ظرفیت مخزن حدودا ۱۰ برابر ظرفیت آسیاب است.


«خوراک دهنده» (feeder): زغال‌سنگ از مخازن به سمت خوراک دهنده فرستاده می‌شود که تامین کننده زغال‌سنگ دستگاه آسیاب است. مهم‌ترین دلیل برای قرار دادن خوراک دهنده بین دستگاه آسیاب و مخزن، مصون ماندن دستگاه آسیاب از فشار ایجاد شده توسط زغال‌سنگ در مخازن است.

دستگاه آسیاب: زغال‌سنگ مستقیما به دیگ بخار ارسال نمی‌گردد. دستگاهی که زغال‌سنگ را به پودر تبدیل می‌کند،‌ آسیاب نام دارد. «طبقه‌بندی کننده» (classifier) مقصد بعدی زغال‌سنگ پودر شده است.

طبقه‌بندی کننده: دستگاه‌های طبقه‌بندی برای جداسازی زغال‌سنگ پودر شده از زغال‌سنگی که هنوز پودر نیست،‌ استفاده می‌شوند. بر این اساس این دستگاه پودر زغال‌سنگ را به کوره و بقیه را به دستگاه آسیاب برگشت می‌دهد. طرز کار این قسمت مانند الک کردن است.

2. بخش هوا
فن PA: فن PA اولین فن در چرخه هوا و کار آن انتقال پودر زغال‌سنگ به مخزن است. از دیگر کاربرد‌های آن می‌توان به جداسازی اجزای مرطوب از پودر زغال‌سنگ اشاره کرد.

فن ID: علت نام‌گذاری این نوع فن به این دلیل است که مکش مصنوعی ایجاد می‌کند. وظیفه فن ID مکش دود ناشی از سوخت زغال‌سنگ از دیگ بخار و انتقال آن توسط دودکش است.

فن FD: کاربرد فن FD تزریق هوا و درنتیجه اکسیژن بیشتر برای به‌سوزی زغال‌سنگ در کوره‌ها است. این نوع فن هوای داغ را به سمت کوره می‌فرستد.

«پیش‌گرم کننده هوا» (air preheater): این تجهیز یک نوع «مبدل حرارتی» (heat exchanger) است که گرمای موجود در گاز‌های تولیدی از کوره را در تبادل با هوای ورودی از فن‌های FD و PA قرار می‌دهد. هوای ورودی به این شیوه قبل از ورود به کوره گرم می‌شود و تا حد زیادی مصرف انرژی پایین می‌‌آید.

«غبارگیر الکترواستاتیک» (‌Electrostatic Precipitator): این وسیله مابین دودکش دیگ بخار و فن ID قرار می‌گیرد و از خروج ذرات خاکستر و زغال‌سنگ جلوگیری می‌کند. وظیفه دیگر آن کنترل آلودگی هوای خروجی است.

دودکش: معمولا دودکش‌ها مکشی طبیعی را برای خروج گاز‌های سوزانده شده فراهم می‌کنند. هر دودکش برای استفاده در دو واحد صنعتی کافی است.

3. بخش تولید ‌بخار
«اکونومایزر» (Economizar): اولین دستگاه مورد استفاده برای تولید بخار اکونومایزر است. اکونومایزر تجهیزی است که استفاده از آن باعث افزایش بازده نیروگاه بخار می‌شود. در حقیقت این تجهیز گرمای حاصل از گاز‌های خروجی را می‌گیرد و صرف گرم کردن آب می‌کند. آب گرم شده سپس به ظروف تولید بخار انتقال می‌یابد.

دیگ بخار
: آب از مرحله قبل به سمت دیگ بخار جریان می‌یابد. دیگ بخار اصلی‌ترین قسمت نیروگاه گرمایی است. از این تجهیز برای تبدیل آب به بخار استفاده می‌گردد. در هر نیروگاه بخار، دیگ بخار را از نوعی که آب در لوله‌ها جریان پیدا می‌کند (water tube boiler) انتخاب می‌کنند. زیر دیگ بخار کوره قرار دارد که زغال‌سنگ در این قسمت می‌سوزد. «جداکننده» (Separator) نیز جز بزرگی از نیروگاه بخار را تشکیل می‌دهد. جداکننده ظرفی است که بر روی دیگ بخار قرار می‌گیرد و آب را از بخار تفکیک می‌کند. به جداکننده گاهی «steam drum» می‌گویند. بخار آب از قسمت دیگ بخار به «فوق‌ داغ کننده» (Super Heater) فرستاده می‌شود.

فوق‌ داغ کننده: بازده نیروگاه‌ گرمایی مستقیما با دمای بخار رابطه دارد. دیگ بخار در حال تولید بخار با دمای کم است که برای هر نیروگاهی اقتصادی نیست؛ بنابراین از فوق‌داغ کننده برای رساندن دمای بخار به حد مناسب استفاده می‌گردد. از آنجایی که مواد سازنده توربین توان تحمل دمایی بالاتر از ۶۰۰ درجه سانتی‌گراد را ندارد، بخار در این مرحله تا ۵۵۰ درجه گرم و سپس به توربین پرفشار فرستاده می‌شود.


«باز گرم کن» (re heater): زمانی که انرژی بخار تولیدی در توربین پرفشار تخلیه می‌شود، دما و فشار آن افت می‌کند. اگر مستقیما بخار از این مرحله به توربین فشار متوسط فرستاده شود،‌ انرژی کمی تولید می‌گردد. برای افزایش بازده و قدرت این مرحله، بعد از خروجی توربین پرفشار، بخار مجددا گرم می‌گردد. گفتنی است که دوباره دمای  بخار به ۵۵۰ درجه سانتی‌گراد می‌رسد.


۴.  بخش توربین
توربین فشار بالا (HP): بخار از فوق‌ داغ کننده به سمت توربین پرفشار حرکت می‌کند. هر سه نوع توربین به یک شفت متصل هستند که باعث چرخاندن شفت ژنراتور می‌گردد. توربین پرفشار با دمای ۵۵۰ درجه و فشار ۱۵۰ کیلوگرم بر سانتی‌متر مربع کار می‌کند و ازنظر اندازه از همه توربین‌ها کوچک‌تر است.

توربین‌ فشار متوسط (IP): همان‌طوری که از اسم آن پیداست این توربین در فشار حدود ۷۰ کیلوگرم بر سانتی‌متر مربع کار می‌کند. بخار خارج شده از مرحله پرفشار به سمت گرم‌کن‌ها می‌رود و بعد از رسیدن به دمای ۵۵۰ درجه به سمت این توربین می‌آید تا با انبساط خود انرژی مکانیکی تولید کند.

توربین فشار پایین (LP): اصلی‌ترین منبع قدرت که حدود ۴۰ درصد کل انرژی تولیدی است، در این توربین تولید می‌شود. بخار از توربین فشار متوسط به سمت توربین‌ کم‌فشار می‌آید و آن را می‌چرخاند. لازم به ذکر است در بخش توربین، بزرگ‌ترین آن‌ها توربین کم‌فشار است.

«استخراج‌کننده» (Extractor): باهدف افزایش بازده، بخش کوچکی از بخار در مراحل کم‌فشار و پرفشار خارج و برای گرم کردن آب قبل از ورود به اکونومایزر استفاده می‌شود.

۵. بخش چگالنده
چگالنده: به جهت تکمیل چرخه بهره‌برداری، آب باید با فشار بالا به اکونومایزر فرستاده شود. بخار خروجی از مرحله LP توربین، مایع نیست. همچنین توجیهی اقتصادی برای فشرده‌سازی بخار در فشار حدود ۱۵۰ کیلوگرم بر سانتی‌متر مربع وجود ندارد؛ بنابراین تجهیزی نیاز است که بتواند بخار را به حالت آب برگرداند و میعان کند. نام این تجهیز چگالنده است.

به روایتی دیگر چگالنده مبدلی حرارتی است که آب سرد در طول لوله‌ها و بخار در قسمت پوسته آن جریان می‌یابد. آب سرد گرما را از بخار می‌گیرد و درنتیجه بخار تبدیل به آب می‌گردد. فشار عملیاتی چگالنده بسیار کم و در حدود یک کیلوگرم بر سانتی‌متر مربع است که به آن فشار خلا نیز می‌گویند. همین اختلاف فشار بین مرحله LP توربین و چگالنده است که باعث جریان یافتن بخار در چگالنده می‌گردد. آب تولید شده از خنک‌سازی بخار به مخزنی به نام «Hotwell» فرستاده می‌شود.

پمپ‌های استخراج آب: آب تولید شده توسط این پمپ‌ها مکش و به مرحله گرم کردن با فشار پایین انتقال می‌یابد.

گرم‌کن‌های فشار پایین: آب گرفته شده از چگالنده فشار پایینی دارد. درنتیجه برای افزایش بازده نیروگاه، آب با استفاده از بخار خروجی مرحله LP توربین گرم می‌شود.

«اکسیژن‌‌زدا» (Dearator): معمولا مقداری گاز از جمله اکسیژن همراه آب خروجی از چگالنده وجود دارد. به دلیل ایجاد خوردگی، آب همراه با گاز را نمی‌توان مستقیما به دیگ بخار و توربین فرستاد. برای کاهش احتمال خوردگی، گازهای محلول در آب باید قبل از تبدیل به بخار از آن حذف گردند. بدین منظور از تجهیزی به نام اکسیژن‌زدا استفاده می‌شود. دی اریتور در دیگ های بخار برای بازیابی یا تصفیه اب مورد نیاز آن بسیار ضروری هست.

دی اریتور دیگ بخار


اکسیژن حل شده در آب دیگ بخار باعث خسارت‌های شدید ناشی از خوردگی در سیستم بخار می‌شود. به این صورت که به دیواره فلزی لوله‌ها و دیگر تجهیزات فلزی می‌چسبد و تشکیل اکسید (زنگ) می‌دهد. کربن دی اکسید حل شده در آب نیز با آن واکنش می‌دهد و تولید اسید کربنیک می‌کند که باعث خوردگی بیشتر می‌شود.

پمپ‌های ورودی آب یا ورودی دیگ بخار (BFP): پمپ‌های ورودی آب را باید در دسته «پمپ‌های گریز از مرکز» (centrifugal pumps) قرار داد. کاربرد آن‌ها افزایش فشار آب تا ۱۵۰ کیلوگرم بر سانتی‌متر مربع و فرستادن آن به اکونومایزر است.

گرم‌کن فشار بالا: برای افزایش بازده نیروگاه، آب خروجی از پمپ‌های ورودی مدتی در گرم‌کن‌ها حرارت می‌بینند. حرارت مورد نیاز در این مرحله از خروجی مرحله HP توربین تهیه می‌گردد.

برج‌ خنک‌کننده: برج خنک‌کننده وظیفه تولید آب سرد برای استفاده از چگالنده جهت تبدیل بخار به آب را بر عهده دارد.

بخش ژنراتور: شفت توربین به ژنراتور متصل است؛ بنابراین زمانی که این شفت به چرخش درمی‌آید، شفت ژنراتور نیز می‌چرخد و تولید الکتریسیته می‌نماید.

«اکسایتر» (Exciter): به دلیل اینرسی بالای توربین در زمان اولیه راه‌اندازی، توربین به حرکت درنمی‌آید. اکسایدر تجهیزی است که در مرحله اولیه به راه‌اندازی آن کمک می‌کند.

نحوه عملکرد نیروگاه بخار
اکنون‌ راجع به اجزای مختلف نیروگاه بخار صحبت کرده‌ایم. همه این اجزا برای تولید انرژی الکتریکی با یکدیگر همکاری دارند. نحوه عملکرد آن‌ها را می‌توان در ذیل خلاصه نمود:

مرحله اول: در شروع فرآیند زغال‌سنگ پودر شده از دستگاه آسیاب توسط فن PA به دیگ بخار فرستاده می‌شود. اکسیژن لازم برای سوختن مناسب آن را فن FD فراهم می‌کند.

مرحله دوم: پمپ‌های ورودی دیگ بخار، آب مقطر را به اکونومایزر می‌فرستند. در این مرحله، آب فشاری در حدود ۱۵۶ کیلوگرم بر سانتی‌متر مربع پیدا می‌کند.

مرحله سوم: اکنومایزر آب را تا نقطه اشباع در شرایط ایده آل می‌رساند و به ظرف دیگ بخار ارسال ‌می‌نماید. آب از دیگ بخار به حلقه چرخشی کف آن فرستاده می‌شود که همه‌ی لوله‌های دیگ به آن متصل هستند.

مرحله چهارم: اکنون آب در لوله‌های عمودی که هر یک از طرفی به حلقه چرخشی و از طرف دیگر به ظرف دیگ بخار متصل هستند، از بالا به پایین جریان می‌یابد.

مرحله پنجم: آب جریان یافته در دیواره‌های آبی تبدیل به بخار و به دیگ بخار باز می‌گردد و سپس جداکننده، آب را از بخار آب جدا می‌کند.

مرحله ششم: بخار فوق داغ از توربین HP عبور می‌کند و باعث چرخش آن می‌شود. درنتیجه فشار و دمای آن کاهش پیدا می‌کند.

مرحله هفتم: بخار خروجی از توربین HP دوباره گرم می‌شود و دمای آن به حدود ۵۵۰ درجه سانتی‌گراد می‌رسد. در نظر داشته باشید با وجود اینکه دمای بخار به همان دمای اولیه رسانده شده است، فشار آن نسبت به فشار تولیدی مقداری کمتر خواهد بود.

مرحله هشتم: بعد از خارج شدن از گرم‌کن، سریعا بخار از توربین IP عبور  می‌کند و بعد از انبساط، دما و فشار آن بازهم کاهش می‌یابد. سرعت چرخش توربین‌های HP و IP حاصل از انبساط بخار برابر است.

مرحله نهم: بخار خروجی مستقیما به توربین LP انتقال می‌یابد که برای انبساط کاملا آزاد است. درنتیجه بخار کاملا منبسط و حداکثر کار انجام می‌گردد.

مرحله دهم: از این مرحله بخار به سمت چگالنده که در زیر خط خروجی توربین LP واقع است هدایت و خنک‌سازی می‌شود. برج خنک‌کننده نیز آب مورد نیاز برای کاهش دمای بخار را فراهم می‌سازد.

مرحله یازدهم: بخار اکنون به آب تبدیل شده است. برای تبدیل مجدد آن، گرم‌کن فشار پایین با استفاده از گرمای توربین LP آب ورودی را گرم می‌کند.

مرحله دوزادهم: بعد از گرم‌کن فشار پایین آب به اکسیژن زدا برای حذف گازهای خروجی از آب جریان می‌یابد؛ سپس به ترتیب مسیر پمپ‌های ورودی آب، اکونومایزر و فوق داغ کن را طی خواهد کرد.

مرحله سیزدهم: همچنان که آب چرخه گرمایی را تکرار می‌کند، باعث چرخش مداوم توربین می‌گردد که با حرکت شفت ژنراتور منجر به تولید الکتریسیته می‌شود.

معایب و مزایای نیروگاه گرمایی
ازجمله مزایا و معایب نیروگاه گرمایی می‌توان به موارد زیر اشاره نمود.

مزایا
هزینه نصب و راه‌اندازی آن پایین است.
همانند نیروگاه‌های آبی به شرایط اقلیمی وابستگی مستقیم ندارد.
مقادیر زیادی زغال‌سنگ یا سوخت فسیلی دیگر برای تامین سوخت آن در زمین وجود دارد.
تعمیر و نگهداری نیروگاه آسان است.
فضای کمی را اشغال می‌کند.
نیروگاه را می‌توان برای کاهش تلفات انتقال الکتریسیته در نزدیکی محل‌های پرمصرف ساخت.
ناگفته نماند برای کاهش هزینه انتقال سوخت امکان ساخت آن در نزدیکی معادن نیز فراهم است.
معایب
بازده چرخه‌ی آن کم و در حدود ۳۵ تا ۴۰ درصد است.
دائما در حال تولید دود است که باعث انتشار آلودگی‌ها می‌گردد.
استفاده از سوخت‌های فسیلی منجر به گرمایش زمین می‌شود.
هزینه فرآیند در مقایسه با نیروگاه‌های اتمی و آبی بالاتر است.
در هر ساعت خاکستر زیادی تولید می‌شود. در نتیجه کنترل این مقدار خاکستر مشکل است.
امکان دارد آب گرم مستقیما به رودخانه وارد و باعث آسیب به موجودات زنده و چرخه زندگی‌ آن‌ها شود.

رسوب دیگ بخار

تشکیل رسوب بر روی سطوح حرارتی (سمت آب)، ناشی از ناخالصی در آب تغذیه دیگ بخار می باشد. این ناخالصی ها در تمام منابع طبیعی آب، شامل رودخانه ها، چشمه ها، دریاها وجود دارند.
جهت جلوگیری از ایجاد رسوب که منجر به ایجاد مشکلات جدی در عملکرد درست دیگ های بخار می گردد، لازم است این ناخالصی ها از آب تغذیه دیگ حذف گردند.
مهمترین این ناخاللصی ها، ملاح کلسیم Ca، منیزمیم Mg و سیلیس Si می باشند، که بنام املاح سختی معروف هستند.

وجود این املاح در آب تغذیه دیگ، باعث تشکیل رسوب در داخل دیگ می گردد. این رسوبات که عایقهای نسبتا خوبی می باشند با در برگرفتن سطوح منتقل کننده گرما، مانع از تبادل حرارتی دما بین گازهای داغ حاصل از احتراق داخل کوره و لوله ها با آب داخل دیگ می شوند. این عدم تبادل گرمایی، ضمن آنکه موجب پایین آمدن راندمان دیگ بخار و درنتیجه افزایش مصرف سوخت و انرژی خواهد شد، پیامدهای دیگری چون افزایش دمای فلز در معرض رسوب و در نهایت تغییر شکل فلز و افزایش تنش در کوره یا صفحات شبکیه و در آخر ترکیدگی و پیشامدهای مصیبت بار دیگر را در پی خواهد داشت.
فرآیندهای منجر به خوردگی نیز در حضور رسوبات، سرعت بیشتری می گیرند و آسیب های وارده نیز متنوع تر خواهند بود.
آب سخت، علاوه بر ایجاد رسوب و پیامدهای ناشی از آن، موجب بالا رفتن مجموع املاح محلول (TDS) داخل دیگ بخار نیز می گردد.
بالا بودن TDS و قلیائیت ممکن است منجر به ایجاد کف و غلیان در داخل دیگ بخار گردد.
در این حالت سطح آب در حالت نرمال می باشد ولی مقادیری آب همراه با بخار از دیگ بخار  خارج می شود که منجر به ایجاد حالتهای خطرناکی نظیر ضربه قوچ یا اخلال در سیستمهای مصرف کننده فرآیندی خواهد شد.

برای جلوگیری از ایجاد رسوب در دیگ بخار از دی اریتور،  فیلتر شنی و سختی گیر استفاده می شود.

گزارش طرز کار مشعل گازوئیلی دیگ بخار


مشعل گازوئیلی دیگ بخار

مشعل گازوئیلی دیگ بخار

          الکتروموتور :    الکتروموتور عامل حرکت پمپ و بادزن است و از نوع (( آسنکرون با روتور القایی قفس سنجابی )) است. سرعت الکتروموتورهای گازوئیلی اغلب 2900 و در بعضی موارد 1450 دور در دقیقه است . (( استاتور )) این موتور دارای یک سیم پیچ اصلی راه انداز است . برای ایجاد (( گشتاور )) بیشتر در راه اندازی موتور ، معمولا یک خازن نیز در مدار سیم پیچ راه انداز آن به صورت سری قرار داده می شود   .

      الکترومتورتک فاز می باشد .اگر برق دار شود کار می کند و ونتیلاتور را حرکت می دهد .(ونتیلاتور   به  فن استوانه ای شکل گویند) در  پایین مشعل دمپر هوا وجود دارد و ونتیلاتور هوا را از دمپر می مکید  .

    2) بادزن ( فن یا پروانه): بادزن مشعل ها از نوع گریز از مرکز ( سانتریفوژ ) است که بر روی محور موتور نصب می گردد . پروانه با حرکت موتور به حرکت در می آید و مولکول های هوای بین پره ها، همراه فن شروع به چرخش کرده ، تحت تاثیر نیروی گریز از مرکز از لبه ی پره ها به داخل محفظه ی حلزونی شکل پرتاب می شوند و به طرف اطاقک احتراق هدایت می گردند . در اثر خاج شدن مولکول های هوای بین پره ها ، فشار بین آنها کاهش یافته ، یک خلا نسبی در بین پره ها ایجاد می گردد ، در نتیجه هوای موجود در مرکز بادزن ، به سمت پره ها حرکت می کند و به دنبال آن هوای خارج وارد پروانه می گردد. برای کنترل مقدار هوای بادزن ، در دهانه ی مکش آن یک دمپر قرار می دهند که تنظیم آن در مشعل های کوچک ، دستی و ثابت است ولی در مشعل های بزرگ به وسیله ی یک موتور ، کنترل شده ، متناسب با مقدار سوخت کم و زیاد می شود

از دو نقطه شعله ی مشعل را تنظیم میکنیم:1-سوخت2-دمپر  هوا

پمپ سوخت (گازوئیل) :از پمپ های تولید کننده ی فشار بالا می باشد .(از نوع ماه و ستاره و یا چرخ دنده ای می  باشد)

پمپ   سوخت و الکترومتور و ونتیلاتور در یک محور قرار دارند.

به پمپ  سوخت3 لوله متصل شده است:1-مکش 2-رانش 3-برگشت  (بای   پاس)

وظیفه ی پمپ سوخت مکش و رانش تأمین سوخت مشعل می باشد  .

 معمولا پمپ گازوئیل را در مشعل های فشار قوی به صورت دوار و یا چرخ دنده ای به صورت یک یا دو طبقه می سازند .  شیر برقی مسیر سوخت را کنترل میکند (باز و   بسته)

معمولا در مسیر عبور سوخت از پمپ به طرف نازل ، یک شیر برقی قرار می دهند تا در زمان خاموش بودن مشعل ، از نشت گازوئیل به داخل اطاقک احتراق جلوگیری کند . این شیر دارای یک سوزن است که در حالت عادی تحت تاثیر وزن خود پائین آمده ، مجرای عبور سوخت را می بندد ، وقتی که برق به سیم پیچ ( کویل ) آن می رسد ، میدان مغناطیسی ایجاد شده ، به وسیله ی کویل ، هسته ی آهنی و در نتیجه سوزن بالا می رود و مجرای عبور سوخت به طرف نازل ، باز شده ، سوخت به داخل دیگ بخار پاشیده می شود. شیر برقی ممکن است روی پمپ در روی لوله حد فاصل پمپ و نازل نصب شود.مشعل را آگوستات روی
دیگ بخار (مستغرق) روشن و خاموش میکند.

فتوسل یا دیده بان رله.زمان روشن و خاموش بودن شعله به رله پیغام هایی میفرستد و رله تصمیم گیرنده  می باشد.  

در هنگام برق زدن مشعل ،موتور وترانس جرقه شروع بکار میکند.شیر برقی کار نمیکند ،ولی ونتیلاتورکار میکند.

کار کردن ونتیلاتور هنگام به برق زدن باعث تخلیه ی سوخت ا ضافی و احتمالی از دودکش میشود این کار  به علت این است که
دیگ بخار هنگام راه اندازی با انفجار شروع به کار نکند.بعد از آن شیر برقی باز میشود و  ترانس جرقه شروع بکار میکند هنگام تشکیل شدن شعله نور به مقاومت فتوسل برخورد میکند و باعث کم و زیاد شدن مقاومت فتوسل میشود و آن پیغام را به رله می فرستد و باعث خاموش شدن جرقه زن می شود.

 تراسفورماتور جرقه : در این تراسفورماتور انرژی الکتریکی می تواند در یک قطعه ی آهن به انرژی مغناطیسی تبدیل شود و انرژی مغناطیسی نیز می تواند به انرژی الکتریکی تبدیل گردد. به عبارت دیگر اگر یک سیم پیچ دور یک قطعه آهن پیچیده شود و جریانی از آن بگذرد ، آهن مغناطیس می شود ، حال اگر یک سیم پیچ دیگر دور هسته ی آهنی پیچیده شود امکان دارد جریان دیگری در آن به وجود آید. برای تبدیل انرژی مغناطیسی به انرژی الکتریکی در سیم پیچ ثانویه ، باید حوزه ی مغناطیسی دائما تغییر کند ، این عمل با اتصال سیم پیچ اولیه به جریان متناوب AC انجام می شود. جریان متناوب برق شهر در یک ثانیه 100 مرتبه تغییر جهت می دهد که این خود باعث تغییر قطب های مغناطیسی ، به اندازه ی      100 برابر bar در یک ثانیه می شود.یک ترانسفورماتور جرقه باید ولتاژ خیلی زیادی را تولید کند تا باعث ایجاد قوس الکتریکی بین دو الکترود شود. این میزان در حدود 10000 ولت است که بین 0 تا 15000 ولت ، 100 مرتبه در ثانیه تغییر می کند. هنگامیکه قوس الکتریکی تولید شود ، ولتاژ به میزان قابل توجهی افت می کند بنابراین ، ترانسفورماتور طوری ساخته می شود که قدرت مصرفی خودش را تنظیم کند وگرنه با کشیدن بار بیش از اندازه خواهد سوخت.8) الکترودهای جرقه: الکترودهای جرقه از جنس فولاد ضد زنگ ( استیل ) و با روپوش چینی هستند. هیچ گاه نباید فاصله ی میله ی الکترود ها از قسمت های فلزی مشعل ، کمتر از 6 میلی متر شود. محل نصب الکترود ها در بالا و جلوی نازل است. همین که سوخت پودر شده ی در حال چرخش از نازل خارج شود با هوای متلاطم عبور کرده از ( شعله پخش کن ) مخلوط می شود ، این مخلوط توسط جرقه ی بین سر الکترودها مشتعل می گردد.

شعله پخش کن:      شعله پخش کن قطعه ای است که سر راه ورود هوا به اطاقک احتراق قرار می گیرد و آن را خلاف جهت چرخش سوخت ، به چرخش در می آورد تا باعث اختلاط هرچه بهتر سوخت و هوا گردد

چشم الکتریکی: چشم الکتریکی مقاومتی الکتریکی است که بر اثر تابش نور به آن ، مقدار مقاومتش کم می شود و بالعکس. از این خاصیت برای کنترل شعله در مشعل های گازوئیلی و بعضی مشعل های گازی استفاده می شود. چشم الکتریکی را در داخل لوله ی مشعل رو به طرف شعله قرار می دهند ، اگر شعله تشکیل نشود مقدار مقاومت الکتریکی چشم زیاد خواهد بود و جریانی از آن نمی گذرد تا به رله ی کنترل مشعل برسد در نتیجه رله بلافاصله مشعل را از کار می اندازد که اصطلاحا گویند مشعل (ری ست) کرده است ولی اگر شعله تشکل شود ، با عبور جریان از آن رله نیز تاثیر گرفته ، به مشعل اجازه ی ادامه ی کار را می دهد

بدنه ی مشعل :بدنه ی اغلب مشعل های گازوئیلی و گازی از نوع چدن ریخته گری است که قطعات مختلف مشعل بر روی آن نصب می گردد.

سیستم گرمایش از کف


مقدمه: سیستم حرارتی گرمایش از کف که انتقال حرارت به صورت تشعشعی (تابشی) سهم زیادی در فرآیند گرمایشی آن دارد، درمقایسه با سایر سیستمهای حرارتی نه تنها در صرفه جویی و بهینه سازی مصرف انرژی بلکه در مقوله رفاه و آسایش ساکنان ساختمان ها دارای نقاط قوت بسیاری می باشد. در سالهای اخیر، سیستم گرمایشی از کف در کشورهای اروپائی و آمریکا بسیار متداول شده است و دلیل این گسترش روزافزون بهینه بودن مصرف انرژی، توزیع یکسان گرما در تمامی سطح و فضا و دوری از مشکلات موجود در سایر روش ها ، به عنوان مثال سیاه شدن دیوارها، گرفتگی و پوسیدگی لوله ها و… می باشد. استفاده از روش گرمایش از کف جهت گرمایش محل سکونت از دیرباز به طرق مختلف انجام می گرفته است. بطوریکه رومی ها زیر کف را کانال کشی کرده و هوای گرم را از آن عبور می دادند و کره ای ها دود حاصل از سوخت را قبل از اینکه از دودکش عبور کند از زیر کف انتقال می دادند. در سال 1940 نیز فردی بنام سام لویت برای این منظور لوله های آب گرم را در زیر کف قرار داد. درکشور ایران نیز درمناطق کوهستانی و سردسیر ازجمله آذربایجان این روش مورد استفاده قرار می گرفته، که بیشترین مورد استفاده آن درحمام ها بود.
به طور کلی سه نوع روش گرمایش از کف موجود است:

1. گرمایش با هوای گرم
2. گرمایش با جریان الکتریسیته
3. گرمایش با آب گرم
به دلیل اینکه هوا نمی تواند گرمای زیادی را درخود نگاه دارد روش هوای گرم در موارد مسکونی چندان به صرفه نیست و روش الکتریکی نیز فقط زمانی مقرون به صرفه است که قیمت انرژی الکتریکی کم باشد.درمقایسه با دو روش ذکر شده، سیستم گرمایش با آب گرم ( هیدرولیک) مقرون به صرفه تر و خوشایندتر می باشد. بدین خاطر سالهای متوالی در سراسر دنیا مورد استفاده قرار گرفته است.
روش گرمایش از کف به عنوان راحت ترین، سالم ترین وطبیعی ترین روش برای گرمایش شناخته شده است. همانطور که افراد دریک روز سرد زمستانی توسط تشعشع خورشید احساس گرما می نمایند دراین روش نیز گرما را بوسیله انتقال حرارت تشعشعی(تابشی) از کف دریافت می کنند و یقیناً احساس آسایش بیشتری خواهند نمود. در این سیستم گرمایشی معمولاً دمای آب گرم موجود در لوله های کف خواب بین 30 تا60 درجه سانتی گراد می باشد که درمقایسه با سایر روشهای موجود، که دمای آب بین 54 تا 71 درجه سانتی گراد است، 20 تا40 درصد در مصرف انرژی صرفه جوئی می شود. در ساختمان هائی که دارای سقف بلند می باشند استفاده از سیستم گرمایش از کف باعث کاهش مصرف انرژی و صرفه جوئی در مصرف سوخت می شود، به این خاطر که در سایر روشها (مانند رادیاتور و بخاری) هوای گرم در اثر کاهش چگالی سبک شده و به سمت سقف می رود و اولین جائی را که گرم می کند سقف می باشد (این موضوع به طور واضح درسمت چپ شکل زیر مشخص می باشد). به علت بالا بودن دمای هوا در کنار سقف میزان انتقال حرارت آن به سقف از هرجای دیگر بیشتر است و این عامل باعث اتلاف مقدار زیادی انرژی می شود.
در روش گرمایش از کف ابتدا قسمت پائین که مورد نیاز ساکنین است گرم می شود وهوا با دمای کمتری به سقف می رسد، که این یکی از مزایای اصلی این سیستم می باشد. یکی دیگر از مزایای استفاده از روش گرمایش از کف که امروزه بسیار مورد توجه واقع می شود آسایش و راحتی افراد می باشد، به طوریکه آسایش و راحتی فرد در محل سکونتش بدون اینکه از هر بابت دارای محدودیت باشد فراهم می شود. در نظر بگیرید که بدن شما در یک اتاق بگونه ای گرم شود که شما در هنگام استراحت هیچگونه هوای گرمی را استنشاق نکنید وتنفس شما بسیار ملایم صورت گیرد، این بهترین روش گرم کردن در یک آپارتمان و یا یک منطقه صنعتی است. همه اعضای بدن شما بخصوص پا که بیشترین فاصله را با قلب دارد همیشه گرم خواهد ماند و این برای انسان بسیار مطلوب خواهد بود.
همانگونه که قبلاً اشاره شد در گرمایش بوسیله رادیاتور یا بخاری دمای قسمت پائین اتاق سردتر از بالای آن می باشد که این حالت برای کودکان که دارای اندام کوچکی هستند ناخوشایند است، بطوریکه افزایش البسه آنها برای جلوگیری ازبیماری، آزادی کودکانه آنها را محدود می کند. سیستم گرمایش از کف برخلاف رادیاتور که هوای محل سکونت را به دلیل گرمای بیش ازحد خشک می کند،رطوبت را درحد متعادل نگه می دارد. همانطور که می دانید بیشتر افراد از کثیف شدن دیوارها و محیط زندگی در اثر استفاده ازمنابع گرمایی همچون بخاری و رادیاتور احساس نارضایتی می کنند. از آنجا که درسیستم گرمایش از کف جریان هوا به آرامی از پایین به بالا می باشد بنابراین دیوار ها پاکیزه می مانند. همین امر در مورد افرادی که دارای آلرژی (حساسیت) هستند بسیار مورد اهمیت است زیرا که محیط زندگی عاری ازهرگونه محرک خواهد شد. استفاده از این سیستم در مکانهایی همچون آشپزخانه و حمام که کف آنها معمولاً خیس و مرطوب است مناسب بوده و باعث خشک شدن کف می شود. مسئله مهم دیگر اینکه در این روش رطوبت زمین که دربعضی ازمنازل منجر به بروز بیماریهای مفصلی می شود ازبین رفته و باعث کاهش درد بیماران مبتلا به ناراحتی هایی از قبیل رماتیسم خواهد شد.
همچنین از رطوبت دیوارها و کپک زدن آن که شکل خوشایندی ندارد جلوگیری می شود و دیگر اینکه در این سیستم جایی برای رشد و تکثیر حشرات موزی وجود ندارد. یکی دیگر از فواید سیستم گرمایش از کف این است که دیگر فضای منزل یا محل کار توسط دستگاههای رادیاتور و بخاری اشغال نمی شود و به همین منظور آزادی بیشتری در تغییر دکوراسیون محل زندگی خواهید داشت. شاید به نظر آید که به هنگام نصب سیستم کف خواب دیگر نمی توانید پوشش مورد علاقه تان را برای کف انتخاب کنید! ولی این طور نیست. مطمئن باشید که شما می توانید برای پوشش کف منزل خود از هر نوع مصالحی ازجمله سنگ، سرامیک، کاشی پارکت چوب وفرش نیز استفاده کنید بدون اینکه تأثیری درگرمای مطلوب محیط شما بگذارد. یکی دیگر از مزایای استفاده از سیستم گرمایش از کف در روشهای ذوب برف می باشد بطوریکه از این روش برای ذوب یخ یا برف موجود در پیاده روها، لنگرگاههای بارگیری، جاده ها، ورودی ساختمانها و بیمارستانها، باند فرود هواپیما و زمینهای ورزشی از جمله زمین فوتبال وغیره که دسترسی آسان و سریع به محل الزامی است می توان استفاده کرد. بطوریکه این روش علاوه برکاهش هزینه های برف روبی و نمک پاشی، در حفظ ساختار موارد گفته شده بسیار موثر خواهد بود.
در حدود ۱۷۰۰ سال پیش در امپراتوری روم باستان سیستم گرمایش از کف بعنوان یک روش تامین حرارت مطلوب مورد استفاده واقع می گردید.
نمایی از اجرای سیستم گرمایش از کف

● فواید استفاده از سیستم گرمایش کفی
۱) آسایش و آرامش در بالاترین حد ممکن: درجه حرارت ثابت و دائمی درکلیه طول زمستان در نزدیکی کف ساختمان و در محلی که شما قرار دارید وجود خواهد داشت . این حالت بسیار دلپذیری است که محیط اطراف پا گرم بوده و هوای مورد تنفس گرمای زیادی نداشته باشد. پروفیل دمایی سیستم گرمایش کفی به پروفیل ایده آل بسیار نزدیک است، گرما به آرامی از کف به سمت سقف منتشر می شود، پای گرم و سر خنک، به سلامت کمک می کند.

۲) ثابت بودن حرارت: بعلت جرم بسیار پوشش کف ساختمان در صورت هر گونه قطع برق و یا عوامل دیگر که باعث توقف حرارت دهی مرکزی باشد ، مدت زمان سرد شدن آپارتمان بسیار طولانی تر از سایر روشها می باشد . در این سیستم ابتدا مدت زمانی طول می کشد تا کف زمین به درجه حرارت مطلوب برسد ، ولی پس از گرم شدن این حرارت به صورت باثبات تری در طول مدت زمستان مورد استفاده قرار خواهد گرفت .
۳) سبکی وزن ساختمان، افزایش ارتفاع اتاقها: بعلت استفاده از یکنوع لوله با سایز پائین و همچنین حذف عبور لوله های تاسیساتی از روی یکدیگر ( که عموما باعث بالا آمدن کف واحدها و پر کردن کف در زمان ساخت می شود ) ضخامت پوشش به مقدار زیادی کاهش می یابد. این امر ضمن کم کردن وزن ساختمان ( و در نتیجه استقامت بیشتر آن ) موجب افزایش ارتفاع سقف واحدها نیز می گردد.
۴) صرفه جویی در مصرف سوخت: بعلت تماس مستقیم افراد با منبع گرمایش درجه حرارت اتاق در درجات پائین تری تنظیم می گردد. این امر موجب صرفه جویی ۲۵ الی ۴۰ درصد در مصرف سوخت خواهد شد .
۵) آزادی عمل در دکوراسیون داخل منزل: بعلت قرار گرفتن این سیستم در داخل کف زمین اثاثیه را میتوان در هر گوشه از ساختمان قرار داد . این امر بخصوص در واحدهای کوچکتر و اتاق خوابهای بافضای محدود ، ملموس تر خواهد بود .
۶) هوای پاکیزه تر و خشک نشدن هوا: در سیستم رادیاتوری ، عموما هوای اتاق خشک می شود . در بسیاری از موارد با قرار دادن کتری آب به روی رادیاتور سعی در افزایش رطوبت اتاق می شود . این مشکل در سیستم گرمایش کفی نمودی نخواهد داشت .
۷) تمیزی دیوارها و اثاثیه منزل: بعلت سیکل گردش هوای داغ در زمان استفاده از رادیاتور عموما دیوارهای بالای رادیاتور بمرور زمان سیاه شده و دوده را بخود جذب می نماید . در سیستم گرمایش کفی ویرسبو این مشکل برطرف شده و دیوارها وسایر لوازم در طول زمان سیاه نخواهد شد .
۸) افزایش ارزش منزل: استفاده از سیستم گرمایش کفی ویرسبو موجب افزایش ارزش منازل می شود اگر چه نصب این سیستم از لحاظ هزینه تفاوت چندانی باسیستم حرارت بتوسط رادیاتورهای مرغوب ندارد ، ارزش افزوده آن برای ساختمان بسیار بیشتر خواهد بود .
۹) استفاده از منابع حرارتی مختلف: سیستم گرمایش کفی ویرسبو می تواند از منابع مختلفی برای تامین گرمایش استفاده کند . موتور خانه ، پکیچ و حتی حرارت خورشیدی می توانند در این سیستم مورد استفاده قرار گیرند .
۱۰) خشک تر باقی ماندن زمینهای مرطوب و یا خیس: در صورت نصب سیستم گرمایش کفی ویرسبو در محلهای مانند آشپزخانه ، سرویسهای بهداشتی و زیر زمین ، در صورت خیس شدن کف این محلها بعلت شستشو بسرعت خشک خواهد شد .
● روشهای کنترل دما در سیستم گرمایش کفی:
ـ سیستم کنترل دمای بصورت دست
ـ سیستم کنترل دمای اتوماتیک بصورت مکانیک
ـ سیستم کنترل دمای اتوماتیک بصورت برقی
▪ سیستم کنترل دمای بصورت دست

در این سیستم با استفاده از شیرآلات قطع و وصل متصل شده به خروجی های هر کلکتور،در جعبه مربوطه، امکان کنترل منطقه های حرارتی به صورت دستی امکان پذیر می گردد.از مزایای این سیستم، اقتصادی بودن و ساده بودن سیستم کنترلی، میتوان اشاره نمود.
سیستم کنترل دمای اتوماتیک بصورت مکانیک
در این سیستم با استفاده از نصب شیرآلات گرمایش کفی در داخل دیوار هر فضایگرمایشی، از طریق تنظیم ترموستات حرارتی نصب شده بر روی شیر گرمایش کفی داخل دیوار، دمای محیط مریوطه به صورت مکانیکی و اتوماتیک کنترل می گردد.در این روش داخل جعبه شیر گرمایشی، شیر تخلیه هوا نیز پیش بینی شده است.
▪ سیستم کنترل دمای اتوماتیک بصورت برقی
در این سیستم شیرهای برقی که به حس گرهای الکتریکی در هرمحیط به طورجداگانه وصل شده اند، فرمان قطع و وصل هرمدار حرارتی را دریافت نموده و عملیات تنظیم خودکار هر محیط را انجام می دهند.امکان دیگری همانند، دبی سنج و یا دماسنج نصب شده بر روی هر خروجی وورودی کلکتور امکان کنترل های مختلف و متنوعی را برای کاربر ممکن می سازد.سیستم اتوماتیک برقی پایپکس کاملترین روش کنترلی دمائی فضای گرمایش کفی می باشد.
انواع منبع تامین کننده حرارتی ممکن جهت سیستم گرمایشی از کف:
سیستمهای گرمایش از کف همانند سیستم رادیاتور قابلیت اتصال به انواع منابع تامین کننده حرارتی را دارا میباشند. ولی با توجه به راندمان بالای گرمایش کفی دمای مورد نیاز به بیشتر از ۵۰ درجه نمیرسد. از طرف دیگر دمای مورد نیاز سیستم آبرسانی حد اقل ۶۰ درجه می باشد. در نتیجه در ساختمانی که از گرمایش کفی استفاده می کند نیاز به دو مدار با درجه حرارت متفاوت ضروری است که به روشهای ذیل ممکن می باشد:
ـ استفاده از پکیج
ـ استفاده از موتورخانه با ۲ دیگ  آب گرم
ـ استفاده از موتورخانه با یک دیگ ٖآبگرم و مبدل حرارتی
ـ استفاده از موتورخانه با یک دیگ آب گرم و الکترو والو با مدار بای پاس

مدل سازی اتلاف گرمای سیستم گرمایش کف با استفاده از یک مدل دو بعدی متصل به زمین:
گزارش حاضر، یک مدل شبیه سازی دو بعدی از اتلاف گرما و حرارت را توسط یک ورقه روی پایه، برای سیستم حرارتی کفی، معرفی می کند. وظیفه این سیستم مدل سازی تأثیر آرایش و شکل کف پی ساختمان در کارایی سیستم گرمایش است. این مدل می تواند برای طراحی خانه های دارای پتانسیل مناسب برای سیستم حرارتی کف با توجه به اتلاف گرما از طریق شکل و ترکیب کف و پی ساختمان، استفاده شود.
بررسی ها نشان می دهد که برای یافتن میزان دقیق اتلاف گرما به زمین، مدل متحرک سیستم کف مهم است اما مهمتر از آن، تأثیر بسزایی است که پی ساختمان در اتلاف انرژی ساختمان ها که توسط سیستم حرارت کفی گرم می شوند، دارد. نتیجه این مدل سازی می تواند در طراحی خانه هایی با سیستم حرارتی کفی لحاظ گردد.

مدل شبیه سازی انرژی ساختمان
مدل سازی اتلاف گرمای سیستم گرمایش کف می تواند در یک مدل شبیه سازی شرایط حرارتی یک اتاق با گرمایش کف استفاده شود. بدین منظور مدل انتقال گرما را با خصوصیات مواد ثابت و پایدار مد نظر می گیرند. دیوارها، سقف، کف و پنجره ها با استفاده از یک متر حجمی کنترل محدود با یک طرح تهویه مجازی، مدل سازی می شوند. در این مدل، سیستم تهویه یک سیستم متعادل ساده است که دارای بازیافت گرما می باشد. اطلاعات آب و هوای ساعت به ساعت (اندازه گیری شده یا از یک طرح منبع سالانه) نیز به عنوان ورودی استفاده می شود.
بدین ترتیب، مدل در یک برنامه شبیه سازی با مدل هایی برای دیوارها،( شامل توضیح داخلی تشعشعات خورشیدی)، سقف، کف، تهویه، اتاق و اطلاعات آب و هوا با نام
پیش بینی دقیق جریان گرما و حرارت نشان دهندۀ این مطلب است که ساختمان های بزرگ می توانند به خوبی بعنوان مدل قرار داده شوند که این کار بر پایه ویژگی بعد آنها استوار می باشد. علاوه بر این بهتر است که شبیه سازی دینامیکی حرارت در لوله های گرمکن کف برای محاسبۀ دقیق اتلاف گرما به زمین، در صورتیکه هم میانگین دقیق و هم ماکزیمم جریان گرما نیاز باشد، استفاده گردد. معمولاً مقدار متوسط حرارت کف گرم شده نیاز است.

اما تخمین این مقدار دشوار می باشد زیرا این مقدار به لیست طویلی از فاکتورها وابسته است که شامل میزان مصرف انرژی خانه و مقاومت حرارتی بین سیستم گرمایی کف واتاق می باشد که حتی اشتباهات کوچک در این تخمین باعث ایجاد تفاوت های بزرگ در اتلاف گرمای پیش بینی شده به زمین می گردد. مدل استفاده شده در این مقاله می تواند برای مدل سازی تأثیر پی و ساختمان کف در مصرف انرژی و اتلاف گرما به زمین توسط اتصال مدل کف به یک اتاق سنجیده و استفاده شود. با استفاده از این مدل جامع، شبیه سازی دینامیکی اتاق و سیستم گرمایی کف قابل اجرا می باشد. در این مدل تأثیر عایق در ساختمان کف و پی در مصرف انرژی خانه مهم نشان داده شده است. اما اِشکال مدل این است که کند بوده و به تعداد داده های زیادی نیازمند است. در هر حال این مدل می تواند به عنوان گامی به طرف اجرای سیستم های گرمکن کف قلمداد گردد.

تاریخچه سیستم گرمایش کفی
سیستم گرمایش کفی در جهان جدید نمی باشد و بصورت بسیار ابتدایی و ساده مورد استفاده قرار می گرفته است .در واقع برای اولین بار گرمایش کفی در حدود 60 سال بعد از میلاد یعنی روم باستان مورد استفاده قرار گرفته است.
رومیان با سوزاندن چوب و ایجاد گازهای متشعل و عبور دادن این گازها از کانالهای هوایی موجود در کف ساختمان اقدام به گرم کردن کف منازل خود می کردند . این روش مدتهای مدیدی مورد استفاده قرار گرفته است.
هم اکنون نیز همین سیستم گرمایشی مورد استفاده قرار می گیرد با این تفاوت که نحوه عمل مقداری تغییر کرده است و بجای گاز داغ از آب گرم و بجای کانالها از لوله های مخصوص استفاده می کنند.
امروزه با پیشرفت تکنولوژی هزینه نصب سیستم گرمایش کفی کاهش یافته است و با استفاده از لوله های PEX دیگر مشکلات مربوط به لوله های مسی وفلزی و پلی بوتیلن را نخواهیم داشت .
لوله های پلی بوتیلن (PB) مدتها در این روش مورد استفاده قرار می گرفت اما بدلیل وجود مشکلاتی مانند نشتی آب، کم کم جای خود را به لوله های جدید تر دادند .
امروزه لوله های پلیمری جدیدی بنام تجاری PEX که از جنس پلی اتیلن مشبک شده می باشند مورد استفاده قرار می گیرند. که مانند لوله های PBنصب آنها بسیار آسان خواهد بود اما بخاطر ساختار مشبک آن خواص بهتری از خود نشان می دهند و مشکلات لوله های پلی بوتلین را ندارند .
لوله های PEX برای اولین بار در سال 1971 توسط شرکت ویرسبوی سوئد تولید و به جهانیان عرضه شد . این لوله ها بعد از مدت کوتاهی توانستند جایگزین لوله های قبلی شوند. هم اکنون شرکت ویرسبو سوئد بزرگترین طراح و مجری سیستم گرمایش کفی در تمام جهان می باشد.
از سال 1990 تولید تولید این لوله در آمریکا آغاز شد و هم اکنون بیش از 50% از تمام سیستمهای گرمایش کفی بکار رفته در این کشور از لوله های PEX ویرسبو استفاده می کنند .
FHSim برای شبیه سازی گرمکن کف، بکار گرفته می شود. با استفاده از این برنامه، گرمکن کف، می تواند جزئیات به مصرف انرژی و اتلاف گرما به زمین را مشخص سازد. بعلت سیکل گردش هوای داغ در زمان استفاده از رادیاتور عموما دیوارهای بالای رادیاتور بمرور زمان سیاه شده و دوده را بخود جذب می نماید . در سیستم گرمایش کفی ویرسبو این مشکل برطرف شده و دیوارها وسایر لوازم در طول زمان سیاه نخواهد شد . PBنصب آنها بسیار آسان خواهد بود اما بخاطر ساختار مشبک آن خواص بهتری از خود نشان می دهند و مشکلات لوله های پلی بوتلین را ندارند . PEX دیگر مشکلات مربوط به لوله های مسی وفلزی و پلی بوتیلن را نخواهیم داشت .

لوله های پلی بوتیلن (PB) مدتها در این روش مورد استفاده قرار می گرفت اما بدلیل وجود مشکلاتی مانند نشتی آب، کم کم جای خود را به لوله های جدید تر دادند

دیگ فولادی یا مسی

امروزه مهندسانی که برای صاحبان ساختمانها کار می کنند در هنگام انتخاب دیگ های گرمایش آب تاسیسات ساختمانها گزینه های متنوعی را در اختیار دارند. این گزینه ها انواع دیگ های قطعاتی چدنی، دیگ با لوله های فولادی اعم از لوله های آتش یا آب، دیگ با لوله های پره دار مسی و دیگ های چگالشی را در بر می گیرد. تمام این انواع مختلف امروزه در پروژه های ساخت و ساز بکار برده می شوند.

با وجود این همه تنوع انتخاب، یک مالک و یا مهندس طراح تاسیسات ساختمان ممکن است با آخرین ویژگی های عرضه شده در طراحی دیگ ها آشنایی نداشته و یا نتواند براحتی با مدل هایی که کاملا امتحان خود را در بازار پس نداده اند کنار بیاید. بسیاری از مالکان و مهندسان با مدل های خاصی از دیگ ها آشنایی دارند و یا برنامه های نگهداری خود را حول نوع خاصی از دیگ ها طرح ریزی کرده اند. چه بسا این گونه افراد برای پروژه های جدید و یا برنامه های اصلاح دیگ های موجودشان چیزی به نام تغییر مدل دیگ ها را به حساب هم نمی آورند.

دیگ فولادی یا مسی؟

هنگامیکه مهندسی شروع به فکر کردن در باره نوع دیگ جهت استفاده در پروژه خاصی می کند، نتیجه ای که نهایتا حاصل می شود انتخاب دیگ فولادی به جای دیگ مسی است. با وجودیکه دیگ های قطعاتی چدنی و دیگهایی که مبدل های حرارتی فولاد ضد زنگ در آنها بکار رفته است هم اکنون در بازار موجود بوده و در برخی پروژها مورد استفاده قرار می گیرند، با این حال انتخاب دیگ فولادی همچنان انتخاب برتر محسوب می شود. درک تفاوت های طراحی دیگ با لوله های فولادی و دیگ با لوله های مسی از نظر کاربرد مناسب این مدل ها در تاسیسات حائز اهمیت است.
کاربرد دیگ های دارای لوله های فولادی مدتها قبل از دیگ های با لوله مسی شروع شده و محدوده تنوع مدلهای آن بسیار وسیع تر می باشد و انواع دیگ با لوله های آتش، با لوله های آب، با لوله های آب انعطافی (فلکس تیوب) و با لوله های آب مایل را در بر می گیرد.در اکثر کاربردهای گرمایش آب در تاسیسات تجاری استفاده از دیگ های دارای لوله های انعطافی و لوله های آب مایل نسبت دیگ های دارای لوله های آتش رایج تر است.
اکثر مدل های لوله انعطافی دارای 5 فوت مکعب سطح گرمایش هستند. زیاد بودن مقدار سطح گرمایش تنها معیار برخی از مهندسان در انتخاب دیگ پروژه می باشد. اما سنجش توان یک دیگ تنها بر اساس میزان فوت مکعب سطح گرمایش امروزه دیگر یک نرم کاری قدیمی محسوب می شود. این نوع سنجش سالها پیش، زمانی که ذغال سنگ و گازوئیل و مازوت سوخت اغلب دیگ ها بودند و وجود سطح گرمایش اضافی برای مقابله با رسوب گیری ناشی از این سوخت ها اهمیت زیادی داشت ابداع شده است، معیار سنجش مذکور این موضوع را که آیا طراحی دیگ قادر به جذب یکنواخت حرارت در تمام سطح لوله دیگ می باشد یا خیر در نظر نمی گیرد.
دیگ های مسی در اواخر دهه 1940، پس از جنگ جهانی دوم به بازار آمدند. برای اکثر مهندسان سالها طول کشیده است تا دیگ های لوله مسی را بر دیگ های لوله فولادی ترجیح دهند. مهندسان تاسیسات بزرگ احساس می کنند که دیگ های لوله مسی تنها از نظر پایین بودن قیمت بهترین انتخاب برای موتورخانه محسوب می شوند نه بهترین گزینه از جمیع جهات.
دیگ های لوله مسی در حدود 25 تا 30 % از مدل های دیگ با لوله انعطافی ارزانترند. پایین تر بودن قیمت اولیه دیگ های لوله مسی بطور خودبخودی نزد تعدادی از مهندسان به معنای کمتر بودن قابل ملاحظه طول عمر دیگ تلقی شده است. اما بسیاری دیگر نیز بر این باورند که دیگ های لوله مسی با لوله پره دار امروزه بهترین انتخاب برای ساختمانهای تجاری می باشد. پایین تر بودن قیمت اولیه و تقاضا برای راندمان های بالاتر، انعطاف پذیری در انتخاب گزینه های تخلیه دود احتراق ، و نیاز به فضای نصب کوچکتر سبب گرایش بازار به سمت دیگ های لوله مسی شده است.

دمای آب برگشتی :
در هنگام انتخاب و نصب هر نوع دیگ آب گرم در سیستم، دمای آب برگشتی باید در نظر گرفته شود. دمای برگشت آب گرم سیستم تهویه مطبوع کلید کاربرد هر نوع دیگی در سیستم محسوب می شود. دیگ و آب گرم به یکدیگر وابسته اند. البته این نکته بدیهی به نظر می رسد. اما بروز اشکالات در سیستم و خرابی دیگ اغلب در مواردی رخ می دهد که دیگ استفاده شده با سیستم تهویه مطبوع سازگاری ندارد. راندمان دیگ به دمای آب برگشتی و بار دیگ بستگی دارد.
دمای آب برگشتی دیگ های غیر چگالشی باید بین 130 تا 140 درجه سانتیگراد باشد تا از تقطیر گازهای تنوره جلوگیری شود. تقطیر باعث خرابی دیگ و کوتاه شدن عمر مفید آن شده و به بروز اشکال در برنامه های نگهداری و تعمیرات منجر می شود. اگر طراحی سیستم به حد کافی بالا بودن درجه حرارت آب برگشتی را تا حدی که از تقطیر جلوگیری کند تضمین ننماید، دیگ های دارای لوله فولادی و یا مسی دچار خرابی می شوند. در صورت پایین بودن دمای آب برگشتی بایستی نسبت به مواردی از قبیل سیستم های پمپاژ آب گرم ، ذوب کردن برف ، و تنظیم دریجه هوای خارج (outdoor air reset) توجه کافی مبذول گردد تا از بالاتر بودن دمای آب برگشتی نسبت به نقطه شبنم گازهای تنوره اطمینان حاصل شود.
دیگ های چگالشی یک انتخاب عالی برای سیستم های پمپاژ منابع آب گرم می باشند زیرا دمای آب برگشتی در این سیستم ها از سیستم های دیگر کمتر است. دمای آب برگشتی در این سیستم ها در حدود 60 درجه سانتیگراد است ، که برای دیگ های چگالشی مطلوب است. راندمان دیگ های چگالشی با پایین آمدن دمای آب برگشتی بهبود می یابد.



          

منحنی های راندمان دلیل مناسب نبودن دیگ های چگالشی برای سیستم هایی که درجه حرارت آب برگشتی آنها بالاتر از 140 درجه است را نشان می دهند. دیگ چگالشی در دماهای بالاتر آب برگشتی به راندمان بالای خود نمی رسد و سرمایه گذاری بیشتر نیز در این مورد توجیهی ندارد. اما اگر یک راهبرد کنترل بار مبنا طراحی شود، بطوریکه دیگ های چگالشی قادر به تامین گرمایش مجدد با استفاده از مزیت بالاتر بودن دمای آب برگشتی در ایام تابستان بوده و دیگ های غیر چگالشی نیز در ایام زمستان قادر به تامین دمای بالاتر آب باشند، در این صورت استفاده از دیگ های چگالشی که قیمت اولیه بالاتری دارند ممکن است مقرون به صرفه باشد.
ظرفیت سیستم یکی از ملاحظات مهم در تصمیم گیری برای انتخاب دیگ محسوب می شود. محدوده سایز دیگ های با لوله فولادی از 400 تا 2100
Mbtuh را در بر می گیرد. در مورد پروژه های بزرگ، استفاده از یک یا دو دیگ با لوله فولادی ممکن است عملی تر باشد تا بکارگیری یک مجموعه مرکب از چندین دیگ با لوله مسی. در صورت استفاده از چندین دیگ لوله مسی، سیستم آب داغ باید برای چیدمان پمپاژ اولیه- ثانویه طراحی شود.
اگر وجود گزینه های انعطاف پذیر تخلیه دود احتراق سیستم مورد نیاز باشد باید از دیگ لوله مسی استاندارد با راندمان بالاتر، یعنی راندمان تقریبا 85% و حتی از دیگ چگالشی با راندمان 98% برای پروژه استفاده شود. در اینجا هم برای اطمینان خاطر از اینکه دیگ در سیستم آب گرم موتورخانه قادر به رسیدن به حداکثر راندمان خود می باشد تحلیل دقیق شرایط سیستم مورد نیاز است. دیگ های چگالشی باید در طراحی سیستم هایی گنجانده شوند که تقطیر در آنها صورت می گیرد، و دیگ

های غیر چگالشی نیز باید در سیستم هایی که دمای آب برگشتی آنها زیاد است استفاده شوند.
فضای نصب مورد نیاز دیگ های با لوله مسی کمتر از فضای مورد نیاز دیگ های لوله فولادی است. بنابراین اگر فضای مکانیکی موجود برای نصب دیگ محدود باشد انتخاب دیگ با لوله مسی مطلوبتر خواهد بود. چندین طرح مختلف چیدمان دیگ باید مورد ارزیابی قرار داده شود تا مشخص شود که کدام چیدمان دیگ به حداقل فضای نصب نیاز دارد.

      

برای تصمیم گیری در مورد انتخاب نوع دیگ، مهارت کارکنان تعمیرات و نگهداری باید مد نظر قرار داده شود. همچنین وجود نمایندگی محلی سازنده دیگ نیز حائز اهمیت می باشد. ساده بودن طراحی سیستم کلید توانایی کارکنان تعمیرات و نگهداری برای فهم و نگهداری صحیح دیگ می باشد. تصفیه شیمیایی آب برای موفقیت عملکرد دیگ ها و سیستم های آب گرم از اهمیت حیاتی برخوردار است. ورود آب جبرانی خام به سیستم بایستی از لحاظ سختی اندازه گیری شود تا از صحیح بودن تصفیه آب اطمینان حاصل شده و اپراتور از طریق سیستم هشدار دهنده از نشتی های اضافی سیستم مطلع گردد. تصفیه نامناسب آب یکی از علت های اصلی خرابی دیگ ها است. دبی جریان آب گرچه برای تمام دیگ ها مهم است اما برای دیگ های لوله مسی از اهمیت ویژه ای برخوردار است. دیگ نباید بدون دبی جریان آب کار کند و بدین منظور باید از ادوات کنترلی لازم استفاده شود.
دیگ های بزرگ با لوله فولادی معمولا به سیستم کنترل خودکار تعدیل کننده مشعل مجهزند. دیگ های کوچک لوله مسی عموما دارای سیستم کنترل 2 تا 4 مرحله ای هستند. در مورد سیستم های مرکبی که از چند دیگ لوله مسی تشکیل شده اند ، نوعا باید از کنترل کننده خودکار توالی عملیات استفاده شود تا قابلیت بی بار کردن خودکار مورد نیاز سیستم را تامین کند.