کشت و صنعت

بهره وری در تولیدات

کشت و صنعت

بهره وری در تولیدات

سیکل بخار رانکین

«سیکل رانکین» (Rankine Cycle) یا «سیکل بخار رانکین» به مجموعه‌ فرآیند‌های بسته‌ای گفته می‌شود که نتیجه آن کار مفید خروجی است. معمولا در این سیکل‌ها از آب به‌عنوان سیال کاری استفاده می‌شود. هم‌چنین در بخشی از فرآیند‌های این سیکل، سیال مذکور به صورت بخار و در بخشی دیگر به شکل مایع است.

عمدتا از سیکل رانکین برای تولید توان در نیروگاه‌های مبتنی بر سوخت فسیلی یا هسته‌ای استفاده می‌شود. در این نیروگاه‌ها با استفاده از سوزاندن سوخت‌های مذکور، آب را در بویلر – یا دیگ بخار – به بخار تبدیل می‌کنند. پس از آن، با عبور دادن این بخار از توربین، کار مدنظر تولید می‌شود. شکل زیر شماتیک کارکرد سیکل رانکین را نشان می‌دهد.

rankine

فرآیند‌های انجام شده در یک سیکل رانکین

در حالت کلی ۴ فرآیند اصلی در یک سیکل رانکین اتفاق می‌افتد. در ادامه هرکدام از این فرآیند‌ها توضیح داده شده.

  • ۲→۱: افزایش فشار سیال با استفاده از پمپ
  • ۳→۲: انتقال حرارت به سیال پرفشار توسط بویلر یا دیگ بخار و تبدیل آن به بخار داغ
  • ۴→۳: انبساط بخار در توربین و تولید کار
  • ۱→۴: خنک و متراکم شدن سیال در کندانسور

با توجه به مراحل بالا متوجه شدیم که یک سیکل ایده‌آل رانکین از ۴ عنصر پمپ، بویلر، توربین و کندانسور تشکیل شده است. در ادامه در مورد روابط حاکم بر این فرآیند‌ها توضیح خواهیم داد.

به‌منظور توضیح دقیق فرآیند‌های رخ داده در یک سیکل رانکین، دو شکل زیر را در نظر بگیرید.

rankineشکل ۱.

در این سیکل فرآیند‌ها به ترتیب زیر اتفاق می‌افتند.

  • ۲→۱: آیزنتروپیک
  • ۳→۲: فشار ثابت
  • ۴→۳: آیزنتروپیک
  • ۱→۴: فشار ثابت

با توجه به مفاهیم عنوان شده به‌منظور تحلیل سیکل رانکین در ابتدا بایستی مقدار حرارت و کار مبادله شده با محیط را در هر مرحله یافت. توجه کنید که در این تحلیل h نشان دهنده آنتالپی  ویژه سیال در هر مرحله است.

پمپ (فرآیند ۲→۱)

در ابتدا پمپ روی سیال کار انجام داده و فشار آن را افزایش می‌دهد. با فرض این‌که کار انجام شده و انتقال حرارت صورت گرفته را با wpump,in و q نشان دهیم و با توجه به این‌که این فرآیند به صورت آیزنتروپیک انجام می‌شود، می‌توان برای این فرآیند قانون اول ترمودینامیک را به صورت زیر نوشت:

wpump,in + q = h2 – h1

در سیکل رانکین ایده‌آل توربین و پمپ به صورت عایق در نظر گرفته می‌شوند، از این رو مقدار انتقال حرارت خالص صورت گرفته برابر با صفر است. در نتیجه رابطه بالا به شکل زیر در خواهد آمد.

rankine

با توجه به این که سیال ورودی و خروجی به پمپ، به صورت مایع است، بنابراین چگالی آن تقریبا ثابت فرض می‌شود. اگر حجم ویژه (یا همان چگالی) سیال را با نماد ν نشان دهیم، تغییرات آنتالپی در فرآیند ۲-۱ را می‌توان به صورت زیر محاسبه کرد.

h2−h1=Δh=p2ν2–p1ν1=(p2–p1)νh2−h1=Δh=p2ν2–p1ν1=(p2–p1)ν

در ادامه از رابطه بالا بیشتر استفاده خواهیم کرد.

دیگ بخار (فرآیند ۳→۲)

همان‌طور که در بالا نیز بیان کردیم، انتقال حرارت صورت گرفته به سیال در بویلر، به صورت فشار ثابت است. هماننند تحلیل پمپ، در این‌جا نیز با استفاده از قانون اول که در زیر بیان شده، می‌توان مقدار حرارت منتقل شده به سیال را بدست آورد. توجه داشته باشید که در این مرحله qin میزان حرارت وارد شده به سیال را نشان می‌دهد. بنابراین می‌توان گفت:

rankine

در شکل ۱، نقطه ۳ وضعیت سیال را پس از خروج از دیگ بخار نشان می‌دهد. همان‌طور که می‌توان دید در این نقطه آب به صورت بخار «فوق گرم» (Super Heat) است.

توربین (فرآیند ۴→۳)

در توربین است که کار خروجی تولید می‌شود. همانند پمپ، سیال در توربین فرآیندی آیزنتروپیک را تجربه می‌کند. توجه داشته باشید که تمامی این گزاره‌ها مربوط به حالتی است که با یک سیکل ایده‌آل رانکین روبرو هستیم. با توجه به مفاهیم بیان شده، قانون اول برای این فرایند را می‌توان به شکل زیر بیان کرد:

rankine

در رابطه بالا wturbine,out کار خروجی توربین را نشان می‌دهد. توجه کنید که در این جا نمی‌توان هم‌چون پمپ کار را به طور مستقیم محاسبه کرد. بنابراین بایستی آنتالپی ویژه مربوط جریان ورودی و خروجی از توربین خوانده شود و در معادله بالا قرار گیرد.

کندانسور (فرآیند ۱→۴)

احتمالا حدس زده‌اید که این مرحله نیز شبیه به مرحله بویلر است. تفاوتشان در این است که در بویلر سیال گرم و در کندانسور سرد می‌شود. قانون اول برای این مرحله به صورت زیر است.

Rankine

راندمان سیکل رانکین

همانند دیگر سیکل‌های ترمودینامیکی در این سیکل نیز با تقسیم کار خالص خروجی از سیکل و حرارت ورودی به آن، راندمان سیکل محاسبه می‌شود. برای بدست آوردن کار خالص خروجی می‌توان گفت:

wnet=wturbine−wpump=(h3−h4)−(h2−h1)wnet=wturbine−wpump=(h3−h4)−(h2−h1)

توجه داشته باشیدکه کار خروجی مثبت و کار ورودی منفی در نظر گرفته می‌شود. به همین دلیل است که در رابطه بالا قبل از کار پمپ از علامت منفی استفاده کرده‌ایم. از طرفی برای بدست آوردن راندمان بایستی میزان حرارت وارد شده به سیکل را نیز محاسبه کنیم. همان‌طور که می‌دانید در سیکل رانکین این بویلر است که به سیستم انرژی می‌دهد. در نتیجه انرژی وارد شده به سیکل برابر است با:

qin=qBoiler=h3−h2qin=qBoiler=h3−h2

بنابراین با تقسیم کار خالص خروجی به حرارت ورودی به سیکل، می‌توان راندمان سیکل رانکین را به شکل محاسبه کرد.

η=wnetqin=(h3−h4)−(h2−h1)(h3−h2)η=wnetqin=(h3−h4)−(h2−h1)(h3−h2)

مثال

سیکلی مبتنی بر رانکین را مطابق شکل زیر تصور کنید. این سیکل به صورت ایده‌آل در نظر گرفته شده و در آن از بازیاب گرمایی استفاده نشده است.

شکل ۱

فرض کنید سیال ورودی به توربین در دمای ۲۷۵.۶ درجه و فشار ۶ مگاپاسکال است. سیال ورودی کاملا به شکل بخار است. بخشی از سیال پس از منبسط شدن در توربین به صورت مایع در می‌آید. در این حالت چند درصد از سیال خروجی از توربین را بخار تشکیل می‌دهد؟ فرض کنید سیال در دما و فشار ۴۱.۵ درجه و ۰.۰۰۸ مگاپاسکال از توربین خارج می‌شود. با این فرض موارد زیر را محاسبه کنید.

  • کیفیت بخار خروجی از توربین
  • کار انجام شده توسط توربین
  • حرارت اضافه شده به سیستم
  • راندمان ترمودینامیکی این سیکل

در ترمودینامیک برای سیالی که ترکیبی از بخار و مایع است، کمیتی تحت عنوان کیفیت تعریف می‌شود. این کمیت درصد تشکیل‌دهنده بخار را در یک ترکیب مایع و بخار نشان می‌دهد. برای مثال با توجه به تعریف انجام شده، کیفیت سیال ورودی به پمپ، صفر درصد و کیفیت بخار خروجی از بویلر ۱۰۰ درصد است.

از آنجایی که مقدار دقیق کیفیت بخار خروجی را نمی‌دانیم، در اولین قدم بایستی این مجهول یافت شود. با توجه به معلوم بودن فشار خروجی از توربین، می‌توان آنتروپی مربوط به بخار اشباع و آنتروپی مربوط به مایع اشباع را از جدول خواص ترمودینامیکی خواند. ‌‌از طرفی می‌دانیم که مقدار آنتروپی ترکیب مایع و بخار اشباع را می‌توان به شکل زیر بیان کرد.

rankineمعادله ۱

با توجه به این که فشار خروجی توربین برابر با فشار ورودی به پمپ است (به شکل ۱ نگاه کنید) بنابراین خواص ترمودینامیکی نقطه ۴ را می‌توان در فشار ۰.۰۰۸ مگاپاسکال (که همان فشار ورودی است) و از جدول خواص ترمودینامیکی برداشت. دلیل این کار برابر بودن فشار دو نقطه اشباعِ ۱ و ۴ است.

اجزاء معادله بالا به شرح زیر هستند.

  • s4=5.89 kj/kgk: آنتروپی ترکیب بخار و مایع در نقطه ۴
  • sv=8.227 kj/kgk: آنتروپی بخار خالص در نقطه ورود به توربین (نقطه ۳)
  • sl=0.592 kj/kgk: آنتروپی مربوط به مایع اشباع در نقطه ۱

با جایگذاری این مقادیر در معادله ۱ کیفیت بخار خروجی از توربین به صورت زیر بدست می‌آید.

rankine

با استفاده از کیفیت بدست آمده می‌توان معادله ۱ را برای آنتالپی نوشت. هم‌چنین آنتالپی بخار و مایع اشباع را از جدول خواص ترمودینامیکی، در فشار ۰.۰۰۸ مگاپاسکال می‌خوانیم. با مراجعه به جدول مقادیر h4v و h4l به ترتیب برابر با ۲۵۷۶ و ۰.۶۹۴ کیلوگرم/کیلوژول خوانده می‌شوند. بنابراین آنتالپی کل نقطه ۴ را می‌توان به شکل زیر محاسبه کرد.

rankine

از طرفی می‌دانیم که سیال ورودی به توربین به صورت بخار اشباع است. بنابراین می‌توان آنتالپی این نقطه را از جدول خواص ترمودینامیکی برداشت. نهایتا مقدار h3 برابر با ۲۷۸۵ خوانده می‌شود. با معلوم شدن مقادیر h3 و h4 و هم‌چنین با استفاده از قانون اول ترمودینامیک کار خروجی از توربین نیز به صورت زیر بدست می‌آید.

Rankine

توجه داشته باشید که فرآیند‌های یک سیکل رانکین در حالت واقعی دارای بازگشت‌ناپذیری هستند. بنابراین فرآیند‌های رخ داده در پمپ و توربین ممکن است به صورت بازگشت ناپذیر بوده و آنتروپی تولید کنند. از طرفی  فرآیند انتقال حرارت نیز به صورت دقیقا فشار ثابت نیست و در بویلر و کندانسور افت فشاری وجود خواهد داشت. هم‌چنین به منظور افزایش راندمان این سیکل از روشی تحت عنوان «بازگرمایش» استفاده می‌کنند.

انحراف از سیکل ایده‌آل رانکین

همان‌طور که در بالا نیز بیان کردیم، در یک سیکل ترمودینامیکی واقعی به دلیل وجود برگشت‌ ناپذیری‌ها فرآیند‌ی که کاملا به صورت آدیاباتیک، فشار ثابت یا آیزنتروپیک باشد، رخ نخواهد داد. از این رو به منظور تحلیل چنین سیکل‌هایی آن را با استفاده از تقریب خاصی با سیکل‌های واقعی مدل‌سازی می‌کنند.

اجازه دهید در قدم اول مقادیر ثابتی را به منظور توصیف این برگشت‌ناپذیری‌ها تعریف کنیم. از این رو دو مفهوم «راندمان آیزنتروپیک» را برای پمپ و توربین به صورت زیر تعریف می‌کنیم.

rankine

در رابطه بالا اندیس‌های a نشان دهنده مقادیر واقعی (مثلا ha مقدار واقعی آنتالپی را در نقطه a نشان می‌دهد) خواص ترمودینامیکی و اندیس s مقادیر ایده‌آل را نشان می‌دهند.

شکل زیر سیکل رانکین را در دو حالت ایده‌آل و هم‌چنین در حالت وجود برگشت‌ناپذیری در توربین و پمپ را نشان می‌دهد. در این شکل نمودار قرمز رنگ، سیکل ایده‌آل رانکین و نمودار مشکی رنگ، سیکل واقعی رانکین را نشان می‌دهند.

Rankine

مثال

شکل ۲ نیروگاهی را نشان می‌دهد که مبتنی بر سیکل رانکین کار می‌کند.

rankineشکل ۲

احتمالا همان‌طور که متوجه شده‌اید، می‌توان از نمودار دید که این سیکل از حالت ایده‌آل منحرف شده. راندمان آیزنتروپیک توربین و پمپ را به ترتیب برابر با ۸۷ و ۸۵ درصد در نظر بگیرید. با فرض این‌که نرخ جریان جرمی در این سیکل برابر با ۱۵ کیلوگرم بر ثانیه باشد، موارد زیر مطلوب است:

  • بازده حرارتی این سیکل
  • کار خالص خروجی از سیکل

پیشنهاد می‌کنیم برای حل مسائل مربوط به سیکل رانکین مسیر فرآیند‌ها را روی نمودار مربوط به آن در نظر بگیرید. در حقیقت با نگاهی اولیه به نمودار می‌توان فهمید که کدام خواص را داریم و کدام‌یک از آن‌ها مجهول هستند.

داده‌های اولیه مسئله را می‌توانید روی نمودار T-S مشاهده کنید. در هر نقطه مقادیر دما و فشار مشخص شده‌اند. اولین قدم برای حل این مسئله این است که کار خالص خروجی از سیستم را بیابیم. بدین منظور می‌توان با استفاده از تعریف راندمان پمپ و توربین در ابتدا مقادیر کار ایده‌آل آن‌ها را محاسبه کرد سپس با اعمال راندمانشان، مقادیر واقعی کار پمپ و توربین را یافت. بنابراین می‌توان گفت:

rankine

به همین صورت کار توربین نیز برابر است با:

rankine

گرمای اضافه شده به سیال را مطابق با حالت سیکل ایده‌آل می‌توان یافت و تفاوتی در این حالت وجود ندارد. در نتیجه داریم:

Rankine

نهایتا با بدست آمدن کار خالص خروجی و گرمای داده شده به سیکل، راندمان حرارتی سیکل را طبق تعریف و به شکل زیر محاسبه می‌کنیم.

Rankine

مقادیر گرما و کار محاسبه شده بر واحد جرم هستند. از این رو برای بدست آوردن مقادیر مطلق آن‌ها بایستی اعداد محاسبه شده را در دبی جریان ضرب کرد. برای نمونه کار خالص بدست آمده توسط این سیکل را می‌توان به شکل زیر بدست آورد.

Rankine

از روش‌هایی که به منظور افزایش راندمان سیکل‌های حرارتی استفاده می‌شود، «بازگرمایش» (Reheating) است. در بخشی مجزا در مورد این روش بحث خواهیم کرد.

در این مطلب مفاهیم اصلی و پایه‌ای مربوط به سیکل توانی رانکین را مورد بررسی قرار دادیم. البته مفاهیم مربوط به سیکل‌های ترمودینامیکی نیازمند تمرین بسیار و حل سئوالات گوناگون است. در این‌جا مثال‌های متفاوتی در مورد سیکل‌های ترمودینامیکی حل شده است که می‌تواند برای تسلط به موضوع برایتان مفید باشد. هم‌چنین در صورتی که به مباحث مرتبط در زمینه مهندسی مکانیک علاقه‌مند هستید، احتمالا آموزش‌های زیر نیز برایتان کاربردی خواهند بود.

انفجار دیگ بخار و اختراع موتور استرلینگ

موتور استرلینگ در سال ۱۸۱۶ توسط «رابرت استرلینگ»، مخترع اسکاتلندی، معرفی شد. دلیل اصلی اختراع این موتور جایگزینی آن با موتور بخار بود. دلیل این امر احتمال رخ دادن انفجار در دیگ بخار موتور‌های مذکور به دلیل وجود فشار بالا است. موتور استرلینگ نیز همانند بقیه موتور‌های گرمایی انرژی مکانیکی را به انرژی حرارتی تبدیل می‌کند.

استرلینگرابرت استرلینگ (۱۸۷۸-۱۷۹۰)

ویژگی منحصر بفرد این موتور، ثابت بودن مقدار سیال کاری در سیکل آن است. در حقیقت گاز در بخش سرد‌تر موتور متراکم شده و در بخش داغ‌تر آن منبسط شده و تولید کار می‌کند. معمولا از بازیاب حرارتی درونی در این موتور‌ها به‌منظور افزایش راندمان حرارتی استفاده می‌شود. انیمیشن زیر شماتیک کارکرد این موتور را نشان می‌دهد.

Stirling_Motor

 

اجزاء اصلی موتور استرلینگ

با توجه به حرارتی بودن این دستگاه، حرارت با استفاده از مبدل حرارتی از منبع به سیال کاری منتقل می‌شود. یک موتور استرلینگ از حداقل یک منبع حرارتی و یک سرد کننده و نهایتا ۴ مبدل حرارتی تشکیل شده است. برخی از موتور‌های حرارتی از مجموعه‌ای از این اجزاها تشکیل شده‌اند.

Stirling-parts

منبع حرارتی

معمولا در موتور استرلینگ از احتراق داخلی جهت تولید انرژی حرارتی استفاده می‌شود. هم‌چنین محصولات حاصل از احتراق با سیال کاری و اجزاء داخلی موتور تماسی ندارد. از منابع دیگری همچون انرژی خورشیدی، زمین‌گرمایی و انرژی بایو نیز به‌عنوان منبع حرارتی استفاده می‌شود. جدیدا استفاده از موتور‌های استرلینگ مبتنی بر انرژی خورشیدی به دلیل سازگار بودن آن‌ها با محیط زیست و هم‌چنین مقرون به‌صرفه بودن از نظر اقتصادی،‌ مرسوم شده‌اند.

مبدل حرارتی

در موتور‌های تولید کننده توان‌های اندک و کوچک، معمولا‌ مساحت‌های متصل به سطوح داغ، اندک در نظر گرفته می‌شوند. این در حالی است که در موتور‌های تولید کننده توان‌های بزرگ، سطوح انتقال حرارت را بزرگ‌تر می‌سازند.

در طراحی موتور‌های استرلینگ، مبدل‌های حرارتی به نحوی طراحی می‌شوند که فرآیند انتقال حرارت و افت فشار در پمپ بهینه شود. در موتور‌هایی که در فشار و توان بالا ساخته می‌شوند، بایستی از آلیاژهایی استفاده شود که قابلیت تحمل دمای بالا در سطوح انتقال حرارت را داشته باشند.

بازیاب

در یک موتور استرلینگ، بازیاب عبارت از بخشی است که بین بخش داغ و سرد موتور قرار گرفته و سیال کاری از آن عبور می‌کند. در حقیقت سیال عبوری در یک جهت حرارت را دریافت کرده و در جهت مخالف حرارت را دفع می‌کند.

تاثیر اولیه بازیاب، افزایش راندمان حرارتی در نتیجه جمع آوری حرارت و کاهش بازگشت‌ ناپذیری سیستم است. در بحث افزایش راندمان سیکل رانکین نیز به این روش به تفصیل اشاره شده است. تاثیر ثانویه این بخش، افزایش توان خروجی موتور با ثابت فرض کردن دمای منبع گرم و سرد است.

بازیاب بخشی کلیدی و مهم در موتور استرلینگ محسوب می‌شود که توسط شخص استرلینگ معرفی شده.

خنک کننده

بدیهی است که با افزایش دمای منبع سرد و گرم، راندمان سیکل استرلینگ نیز افزایش خواهد یافت. معمولا منبع خنک کننده همان محیطی است که موتور استرلینگ در آن کار می‌کند. عمدتا در موتور‌های توان بالا از رادیاتور جهت انتقال حرارت به هوای بیرون استفاده می‌شود. موتور‌های زیر دریایی‌ها از این مزیت برخوردارند که از آب به نسبت سردتر به جای هوای بیرونی جهت خنک کننده استفاده می‌کنند.

جابجاکننده

جابجا کننده، پیستون ویژه‌ای است که در حالت گاما یا بتا از آن استفاده می‌شود. در حقیقت جابجا کننده گاز را بین بخش سرد و گرم بازیاب جابجا می‌کند.

طرز قرارگیری اجزاء

در حالت کلی سه نوع معمول از موتور استرلینگ وجود دارد. این موتور‌ها با توجه به نوع قرارگیری پیستون در آن‌ها به مدل‌های آلفا، بتا و گاما دسته‌بندی می‌شوند.

در مدل آلفا از دو پیستون استفاده می‌شود. یکی از این موتورها در سیلندری سرد و دیگری در سیلندری گرم قرار می‌گیرد و گاز میان‌ آن‌ها جابجا می‌شود. انیمیشن زیر طرز کار موتور آلفا نشان داده شده است.

Alpha_Stirling

در مدل بتا از یک سیلندر با انتهای سرد و گرم تشکیل شده است. هم‌چنین در سیلندر مذکور پیستونی قرار گرفته که هوا را بین بخش گرم و سرد جابجا می‌کند. انیمیشن زیر طرز کار موتور استرلینگ مبتنی بر روش بتا را نشان می‌دهد.

Stirling_beta

در مدل گاما نیز از دو سیلندر استفاده می‌شود. در یکی از آن‌ها از جابجا کننده‌ای با دو انتهای سرد و گرم استفاده می‌شود. هم‌چنین در سیلندر دیگر از پیستون تولید کار بهره گرفته می‌شود.

فرآیند‌های سیکل استرلینگ

یک سیکل استرلینگ ایده‌آل از ۴ فرآیند ترمودینامیکی مطابق با مراحل زیر تشکیل شده است.

  1. انبساط دما ثابت: در مرحله اول فضای سیلندر به‌صورت دما ثابت منبسط می‌شود. هم‌چنین گاز در این فرآیند به‌صورت دما ثابت از منبع حرارتی، انرژی دریافت می‌کند.
  2. کاهش فشار در حجم ثابت: در این مرحله گاز از بازیاب عبور کرده و در فرآیندی حجم ثابت فشار آن کم می‌شود.
  3. تراکم دما ثابت: در این مرحله گاز در دمای ثابت حرارت از دست می‌دهد. جهت ثابت ماندن دما، حجم گاز نیز بایستی کاهش یابد.
  4. گرفتن حرارت در حجم ثابت: در این مرحله نیز همانند مرحله دوم، گاز از مبدل حرارتی عبور کرده و بخشی از حرارت منتقل شده در مرحله دوم را جذب می‌کند. بنابراین در این مرحله فشار و دمای گاز در حجم ثابت زیاد می‌شود.

شکل زیر نمودار فشار-حجم را برای سیکل استرلینگ نشان می‌دهد.

Stirling-Cycle

 

 

قبلا در مطلب سیکل‌های ترمودینامیکی عنوان شد که راندمان ایده‌آل یک سیکل گازی برابر با حاصل تقسیم اختلاف دمای منبع گرم و سرد به دمای منبع گرم است. در موتور‌های استرلینگ نیز همین اصل صادق است. بنابراین با اختلاف دمای منبع گرم و سرد در یک موتور استرلینگ، راندمان موتور مذکور افزایش خواهد یافت. دیگر عوامل محیطی منجر به کاهش راندامان موتور استرلینگ خواهد شد. عمده این عوامل محدودیت در فرآیند انتقال حرارت و اثرات جریان ویسکوز هستند.